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Abstract - The Analysis of the behavior of a Ni-Mn-Ga 

single crystal in cantilever is done using a MATLAB code 

based on the theoretical point of view of Landau´s 

elasticity theory [1]. The dislocation theories presented in 

[1–7] for crystalline materials are considered, and a set of 

field equations based on the decomposition of the strain 

tensor into a plastic and elastic behavior under the premise 

that in this sort of materials dislocations are geometrically 

organized causing a reversible elasto-plastic deformation. 

Some simulations are presented using experimental data 

from [24] where small samples of a Ni-Mn-Ga single 

crystal of three different geometries were subjected to 

bending by applying a rotating magnetic field in order to 

get information about the behavior of the sample in 

cantilever, as well as being able to get more information 

about the dynamic process experienced by the dislocations 

of the material and the deformation analysis when both the 

magnitude of the magnetic field and its orientation change. 

This information is used to establish the possible form of 

the strain tensor. For the purpose of the present 

investigation, both the slip system and the value of the 

Poisson ratio for Ni-Mn-Ga single crystal are proposed, 

since there is not enough experimental information about 

it. And taking into account that the highly anisotropic 

character of these materials does not allow to establish a 

constant value for the Poisson’s ratio, however the 

proposed MATLAB code allows to consider in each 

iteration the possible variation of this information. 

Keywords: Magnetic shape memory, MATLAB code, 

Continuum mechanics, Beam bending, Elasto-plastic 

behavior.  

I. INTRODUCTION 

       Magnetic shape memory materials have been extensively 

used throughout the last decade being the Ni2-Mn-Ga single 

crystal the most widely studied and the first magnetic material 

with shape memory properties reported [4]. Among its most 

important and widely studied features at present is the 

induction of a reversible plastic deformation under the action 

of a magnetic field. 

       Here reversible plastic deformation is a term used when 

the sample subjected to a magnetic field undergoes a 

deformation that is not fully recover once the action of the 

magnetic field has been removed, however, the deformation 

can be eliminated as long as a new field acts on the material in 

a certain suitable direction.  

       Its crystalline nature and the presence of localized 

dislocations make the study of these materials of wide interest 

for their possible applications, specifically in actuators, but 

these properties also impose a degree of significant difficulty 

in the study of the behavior of said alloys. 

       The plastic behavior on crystalline materials is presented 

essentially as a response to the motion of the internal 

dislocations of the material on the crystallographic planes and 

in the slip directions [5]. Given the crystalline nature of most 

of the material in engineering it is possible to attribute the 

plastic behavior of the material purely to the kinematics of the 

internal dislocations of the material during the deformation 

process. Considering a plastic behavior due to the propagation 

of the internal dislocations it is not feasible to use the theory 

of the continuum only since it does not consider the existence 

of dislocations. For this reason, it is necessary to extend the 

fundamental theoretical aspects of the continuum mechanics 

(mainly the corresponding to finite elasticity and small 

deformations). As it is known, the motion of the dislocations 

is accompanied, in addition to an elastic deformation, of a 

deformation of the crystal lattice that is not linked to the 

appearance of internal stresses, generating a plastic 

deformation [1]. 

       Recent advances in image processing and analysis have 

allowed understand a little more about the behavior of these 

materials. Rothenbuhler et al [8] uses the Hough 

transformation to characterize the Ni2MnGa alloy finding 

information about the motion and location of the martensite 

twin boundaries. Müllner et al [9] uses a MATLAB code to 
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analyze about 30,000 images and extract information on the 

behavior of Ni2MnGa alloy samples into a variable rotating 

magnetic field.  

       In recent years, in addition to the study of the properties 

and benefits that magnetic shape memory alloys can offer to 

technological advances, scientists, researchers and engineers 

have proposed to develop some mathematical models to better 

understand the behavior of these materials. This type of 

models goes from the analysis of the relationship between 

temperatures and stresses under the action of an external field, 

to the study of the magnetic behavior of NiMnGa alloys and 

others. But also, the interest is changing horizons and they 

have begun to study the properties of Fe - Mn - Cr - Si - Tb - 

B type alloys [10]. 

       There are two possible theories that can be used in 

modeling the behavior of magnetic shape memory materials 

[12]. The first, based on the microscopic properties and the 

physics of solids. Essentially used by physicists and theorists. 

Some relevant articles can be found in [13-16]. The second is 

based mainly on the analysis of macroscopic and 

thermodynamic properties. Focused on dynamical systems and 

develop and manufacture of actuators. These kinds of models 

are used mainly by engineers. Such models can be found in 

[17, 18]. Although several models have been proposed for the 

study of plastic behavior of materials based on 

crystallographic and thermodynamics properties [19], or 

related with the polar decomposition of the deformation 

gradient [20-22]. Few models focused on the analysis of the 

process of dislocations in magnetic shape memory materials 

can be found at present.   

       The aim of this paper is to properly establish the variation 

of the radius of curvature of some samples in cantilever 

subjected to the action of different magnetic field strengths 

and different directions, and use this information to find the 

form of the strain tensor with a MATLAB code, based on the 

decomposition of this tensor into an elastic and a plastic part 

using the displacements vector field proposed by Landau [1]. 

II. KINEMATICS OF FINITE DEFORMATIONS IN 

SINGLE CRYSTALS 

       Nonlinear continuum dislocation theory (NCDT) is based 

on the premise that plastic response is related to a dislocation 

process and it is feasible to use the decomposition of the 

deformation gradient as follows [6]: 

𝑭(𝒑, 𝑡) = 𝑭(𝒑, 𝑡)𝑬  ∘  𝑭(𝒑, 𝑡)𝑷(1) 

       Where the term 𝑭(𝒑, 𝑡)𝑷is associated with the dislocation 

process which characterizes the kinematics of the crystal 

structure along the deformation, see Fig. 1. Expression (1) has 

the immediate consequence for the strain tensor field: 

𝑬(𝒑, 𝑡) = 𝑬(𝒑, 𝑡)𝑬 + 𝑬(𝒑, 𝑡)𝑷       (2) 

This is: 

𝑬 𝒑, 𝑡 =
𝟏

𝟐
 𝛁𝒖 𝒑, 𝑡 + 𝛁𝒖 𝒑, 𝑡 𝑻 + 𝑬(𝒑, 𝑡)𝑷(3) 

Where: 

𝑬(𝒑, 𝑡)𝑬Represents the elastic part of the strain tensor field. 

This part causes stresses in the material. 

𝑬(𝒑, 𝑡)𝑷Represents the part of the strain tensor field related to 

the plastic behavior of the material. It is convenient to mention 

that this term can also be defined by changes of temperature or 

atomic slides, but for the moment and for our analysis we will 

only consider that it is completely defined by the dislocations 

the material undergoes. 

With 

𝑑𝑒𝑡 𝑭𝑷 > 0 

𝑑𝑒𝑡 𝑭𝑷 = 1, 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 𝑜𝑛𝑙𝑦 

       The following representation for the plasticity gradient 

can be considered [7]: 

𝑬𝑷(𝒑, 𝑡) = 𝜸(𝒑, 𝑡)𝕤(𝒑)⨂𝕞(𝒑)(4) 

       Where the vectors 𝕤 and 𝕞 constitute a slip system,𝕤 

represents the slip direction and𝕞 represents the unit normal 

to the slip plane, and𝜸(𝒑, 𝒕)) is the scalar shear slip rate.  

       In the case of Magnetic shape memory alloys, the slip 

planes and directions in which the dislocations occur are 

represented by a transformation system well known [19]. The 

expression (4) represents the case for which is defined a single 

twin boundary and a single slip system. In general, if α (slip) 

systems are considered, where α = 1… n. The expression (4) 

can be written as follows: 

 

Figure 1: Kinematics of the plastic deformation 
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𝑬𝑷(𝒑, 𝑡) =  𝛾𝛼 (𝒑, 𝑡)𝕤𝛼(𝒑)⨂𝕞𝛼(𝒑)           (5)

𝑛

𝛼=1

 

       Thus, by combining expressions (3) and (5), we can 

obtain the form of the strain tensor (found it in most of the 

current literature): 

𝑬 𝒑, 𝑡 𝑻 =
𝟏

𝟐
 𝛁𝒖 𝒑, 𝑡 + 𝛁𝒖 𝒑, 𝑡 𝑻  

+   𝛾𝛼 𝒑, 𝑡 𝕤𝛼 𝒑 ⨂𝕞𝛼 𝒑  6 

𝑛

𝛼=1

 

      Since the behavior of magnetic shape memory alloys 

(MSMA) can be consider as elasto-plastic with reversible 

plastic response the above expression can be considered for 

their analysis. Expression (6) reveals the intimate relation 

between the phenomenological macro and the microcrystalline 

aspects in the material. Then the elasto-plastic problem can be 

understood as a scale problem. 

       The total elasto-plastic deformation gradient can be 

decomposed as follows: 

𝑭 𝒑, 𝑡 = 𝑭 𝒑, 𝑡 𝑬  ∘  𝑭 𝒑, 𝑡 𝑷 = 

= 𝑭 𝒑, 𝑡 𝑬  𝑰 +  𝜸 𝒑, 𝑡 𝕤 𝒑 ⨂𝕞 𝒑 

𝒏

𝜶=𝟏

 (7) 

       The main objective of this paper is to carry out a series of 

simulations using expressions 6 and 7 using a matlab code that 

allows to incorporate experimental data. 

III. ANALYSIS OF BENDING DEFORMATION OF A 

SINGLE CRYSTAL BEAM 

3.1 Introduction 

       The objective of this section is to analyze from a 

geometric point of view the possible motion and deformations 

the material with magnetic shape memory can present. The 

experimental data used for the analysis of the bending 

behavior is fully presented in [24]. Where Hernández et al 

used small beams of a single crystal grown with composition 

Ni51Mn27Ga22 and applied a magnetic force at constant 

angles of 45°, 90° and 135° increasing and decreasing 

magnitude, with measurements every 79.58kAm-1 (0.1T). 

Once the 955 kAm-1 [1.2T] magnetic field was reached, it 

was gradually reduced in such a way that a measurement 

could be made every 79.58kAm-1 (0.1T) in order to observe 

the material’s recovery capacity. This series of tests was 

carried out for three different geometries see Table I. For this 

paper only sample 1 was considered. Some data is presented in 

appendix II. 

TABLE 1: Samples dimensions 

Sample Cross section (mm2) Length (mm) 

1 2x2 10 

2 1x1 5 

3 5x4 6 

3.2 Problem Statement 

       Let  (Fig. 2) be the bounded regular region of the 

geometric space 𝑬𝒊, where i = 1, 2, 3, with analytical 

boundaries i, so that i has a parametric representation. 

With the Dirichlet and Neumann boundary conditions that 

expresses the cantilever problem: 

1) 𝒖 𝒑, 𝑡 = 𝒑, 𝑖𝑛𝓈0 ,𝑓𝑜𝑟 𝑎𝑙𝑙𝑡 > 𝑡0 

                  ∇𝒖 𝒑, 𝑡 = 0, 𝑖𝑛𝓈0 ,𝑓𝑜𝑟 𝑎𝑙𝑙𝑡 > 𝑡0 

       Where 𝒖 𝒑, 𝑡 = 𝒑 is the function that describes the 

displacement of for all𝑡 > 𝑡0. The vector field that describes 

the displacement is given by [1]: 

𝒖 𝒑, 𝑡 =

 
 
 
 
 
 −

 𝑃3
2+𝜐(𝑃1

2 + 𝑃2
2 

2𝑅

−
𝜐𝑃1𝑃2

𝑅
𝑃1𝑃3

𝑅  
 
 
 
 
 

     (𝟖) 

 

Figure 2: Regular region  

       Where R represents the radius of curvature of the beam 

and υ is the Poisson's ratio. Using this vector field, the strain 

tensor is given by: 

𝑬 𝒑, 𝑡 =
1

2
 ∇𝒖 𝒑, 𝑡 + ∇𝒖 𝒑, 𝑡 𝑇 = 

=  

 
 
 
 
 
 −

𝜐𝑃1

𝑅
−

𝜐𝑃2

𝑅
0

−
𝜐𝑃2

𝑅
−

𝜐𝑃1

𝑅
0

0 0
𝑃1

𝑅  
 
 
 
 
 

   (9) 
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       This expression allows incorporate specific information 

on the planes and directions of slip system as well as 

experimental information like the radius of curvature of the 

beam and dimensions of the sample which is the main 

objective of this paper.  

       The use of the data obtained by Hernandez et al [24] and 

get a series of simulations that allow knowing about the 

possible movement of a cantilever beam of a magnetic shape 

memory material. 

3.3 MATLAB Code  

       In this section some simulations were carry out and an 

analysis of the strain tensor and the variation of the radius of 

curvature was done.  An analysis of the variables of the 

equations 9 and 10 was first done in order to create a graphical 

interface in MATLAB. First, the screen in MATLAB asks for 

the dimensional correction matrix (C) to be specified, only if it 

is different from the unit matrix. This is a base change matrix 

applied to the part that represents plastic behavior in 

expression 10, this is because this term is defined upon the 

lattice of the sample.  

       See [23] for a full justification and description of this 

process. It is obvious that this matrix requires information 

about the lattice orientation to be defined. Since this 

information is lacking, all simulations will be carried out 

considering C as the identity matrix. 

       It also asks for the number of iterations of the vector 

summation. From this it will enter a loop where for each 

iteration it will ask for the vectors 𝕤 and 𝕞, this is the slip 

system of interest as well as the scalar shear slip rate gamma. 

Fig. 3.   

       Once the information is complete, the tensor product of s 

and m is calculated and multiplies by gamma. Once the 

number of iterations is over, plastic matrix is calculated using 

the following expression: 

𝐸𝑃(𝒑, 𝑡)𝑻 = 𝐶−1   𝛾𝛼 𝒑, 𝑡 𝕤𝛼 𝒑, 𝑡 ⨂𝕞𝛼 𝒑, 𝑡 

𝑛

𝛼=1

 C     (11) 

        After this, the matrix that describes the elastic behavior 

of the body is calculated. This requires the vector equation 8, 

in terms of 'x = P1', 'y = P2' and 'z = P3', this represent the 

dimension of the sample. With these data, the gradient of the 

vector equation obtained. 

 

Figure 3: Interface. Plastic part 

       In the last part of the program, only the elastic and plastic 

matrices obtained previously are added, obtaining the final 

matrix of elasto-plastic behavior of the body, showing the 

three matrices. And at the end the option to graph the radius of 

curvature of the object was added. Fig. 4. This only requires 

that enter the radius of curvature and select whether you want 

to overlap several values or not. With this a graph in two 

dimensions is obtained. 

 

Figure 4: Elasto-Plastic Behavior 

3.4 Simulations and results 

        The generation of bending strain induces a variation in 

the radius of curvature as a result of the displacement of the 

martensite variants. In figure 5 a magnetic field with a 
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direction of 45º, 90º was applied to the sample from 0 to 1.2T 

at increments of 100mT, and finally decreased to 0T. Once the   

magnetic field is removed, the material recovers, that is, it has 

an elastic behavior that may include a “pseudoelastic” portion 

which is carried by twin boundary motion. See [26]     

       But the sample does not return to the initial position until 

a new field is applied, so this can be understood as a reversible 

elasto-plastic behavior. 

 

Figure 5: Deflection before and after a magnetic field is applied 

       Considering this, several simulations were carried out 

using the data of the radius of curvature presented in appendix 

II in equation 9. The variation was plot in order to observe the 

behavior of the radius of curvature as the magnetic field 

increases at the rate of 0.1T and up to 1.2T. In appendix III the 

results for the variation of the radius of curvature when 

increasing and reducing the magnetic field are presented. 

3.5 Strain tensor and plastic behavior     

       The experimental information about the variation of the 

radius of curvature is used in expression 9 and the value of the 

strain tensor is obtained. In table 2, 3 and 4 the results of the 

simulations for each of the magnetic field directions are 

presented.     

TABLE 2: Magnetic field at 45º 

K 1/K R Strain tensor 

1 1.00000 1.00 

-0.066 -0.066 0 

-0.066 -0.066 0 

0 0 0.2 

2.68 0.37313 0.37 

-0.177 -0.177 0 

-0.177 -0.177 0 

0 0 0.54 

5.16 0.19380 0.19 

-0.341 -0.341 0 

-0.341 -0.341 0 

0 0 1.03 

5.96 0.16779 0.17 

-0.393 -0.393 0 

-0.393 -0.393 0 

0 0 1.19 

6.24 0.16026 0.16 

-0.412 -0.412 0 

-0.412 -0.412 0 

0 0 1.25 

7.48 0.13369 0.13 -0.494 -0.494 0 

-0.494 -0.494 0 

0 0 1.5 

9.04 0.11062 0.11 

-0.597 -0.597 0 

-0.597 -0.597 0 

0 0 1.81 

9.96 0.10040 0.10 

-0.657 -0.657 0 

-0.657 -0.657 0 

0 0 1.99 

10.8 0.09259 0.09 

-0.713 -0.713 0 

-0.713 -0.713 0 

0 0 2.16 

11.7

2 
0.08532 0.09 

-0.774 -0.774 0 

-0.774 -0.774 0 

0 0 2.34 

12.0

8 
0.08278 0.08 

-0.797 -0.797 0 

-0.797 -0.797 0 

0 0 2.42 

12.8 0.07813 0.08 

-0.845 -0.845 0 

-0.845 -0.845 0 

0 0 2.56 

 

 

TABLE 3: Magnetic field at 90º 

K 1/K R Strain tensor 

3.68 0.27174 0.27 

-0.243 -0.243 0.000 

-0.243 -0.243 0.000 

0.000 0.000 0.736 

15.84 0.06313 0.06 

-1.045 -1.045 0.000 

-1.045 -1.045 0.000 

0.000 0.000 3.168 

14.68 0.06812 0.07 

-0.969 -0.969 0.000 

-0.969 -0.969 0.000 

0.000 0.000 2.936 

14.8 0.06757 0.07 

-0.977 -0.977 0.000 

-0.977 -0.977 0.000 

0.000 0.000 2.960 

13.12 0.07622 0.08 

-0.866 -0.866 0.000 

-0.866 -0.866 0.000 

0.000 0.000 2.624 

13.96 0.07163 0.07 

-0.921 -0.921 0.000 

-0.921 -0.921 0.000 

0.000 0.000 2.792 

14.16 0.07062 0.07 

-0.935 -0.935 0.000 

-0.935 -0.935 0.000 

0.000 0.000 2.832 

13 0.07692 0.08 

-0.858 -0.858 0.000 

-0.858 -0.858 0.000 

0.000 0.000 2.600 

13.88 0.07205 0.07 

-0.916 -0.916 0.000 

-0.916 -0.916 0.000 

0.000 0.000 2.776 

11.28 0.08865 0.09 

-0.744 -0.744 0.000 

-0.744 -0.744 0.000 

0.000 0.000 2.256 

10.64 0.09398 0.09 
-0.702 -0.702 0.000 

-0.702 -0.702 0.000 
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0.000 0.000 2.128 

11.36 0.08803 0.09 

-0.750 -0.750 0.000 

-0.750 -0.750 0.000 

0.000 0.000 2.272 

 

TABLE 4: Magnetic field at 135º 

K 1/K R Strain tensor 

1.48 0.67568 0.68 -0.098 -0.098 0 

-0.098 -0.098 0 

0 0 0.3 

1.04 0.96154 0.96 -0.069 -0.069 0 

-0.069 -0.069 0 

0 0 0.21 

1.52 0.65789 0.66 -0.1 -0.1 0 

-0.1 -0.1 0 

0 0 0.3 

0.16 6.25000 6.25 -0.011 -0.011 0 

-0.011 -0.011 0 

0 0 0.03 

0.4 2.50000 2.50 -0.026 -0.026 0 

-0.026 -0.026 0 

0 0 0.08 

0.32 3.12500 3.13 -0.021 -0.021 0 

-0.021 -0.021 0 

0 0 0.06 

0.8 1.25000 1.25 -0.053 -0.053 0 

-0.053 -0.053 0 

0 0 0.16 

0.84 1.19048 1.19 -0.055 -0.055 0 

-0.055 -0.055 0 

0 0 0.17 

0.84 1.19048 1.19 -0.055 -0.055 0 

-0.055 -0.055 0 

0 0 0.17 

1.72 0.58140 0.58 -0.114 -0.114 0 

-0.114 -0.114 0 

0 0 0.34 

2.68 0.37313 0.37 -0.177 -0.177 0 

-0.177 -0.177 0 

0 0 0.54 

1.48 0.67568 0.68 -0.098 -0.098 0 

-0.098 -0.098 0 

0 0 0.3 

       In single crystals the plastic deformation takes place in 

certain planes and directions. Every plane and direction create 

a slip system. For the case of 10M Martensite the modulation 

of the crystal lattice can be expressed through periodic 

changes along the system of planes (110) and directions [110 ], 

see [25]. Under this consideration, simulation was performed 

considering 2 active slip systems Fig. 6. 

 

Figure 6: Two active slip systems 

       For the case of the plastic behavior, a total of twelve slip 

systems were analyzed (see table 5). Considering the existence 

of only two for each simulated sample. The main objective of 

this is to have more detailed information of the tensor field 

that represents the elastic behavior. Each simulation was 

carried out considering a variation in the 𝛾𝛼  value of 0.1. 

        For the elastic analysis the expression 9 was used, 

considering a value of 0.33 in the Poisson's ratio and the 

dimensions of the sample 1 mentioned in table 1. 

TABLE 5: Slip systems 

𝛼 𝕤𝛼  𝕞𝛼  

1 [011 ] (111) 

2 [1 01] (111) 

3 [11 0] (111) 

4 [011 ] (1 11) 

5 [101] (1 11) 

6 [1 1 1] (1 11) 

7 [011] (1 11 ) 

8 [101 ] (1 11 ) 

9 [1 1 0] (1 11 ) 

10 [011] (111 ) 

11 [11 0] (111 ) 

12 [101] (111 ) 

       Finally, the simulations were carried out considering a 

variation of 45º, 90º and 135º between the axis of the sample 

and the direction of the magnetic field. In table 6 the results of 

the simulations for each system are presented. Equation 5 was 

used with a variation of the scalar shear slip rate𝜸 𝒑, 𝒕  from 

0.1 up to 0.9.  

       This in order to have a broader representation of the 

behavior of equation 5 when 𝜸 𝒑, 𝒕  varies. Equation 5 is 

related with plastic behavior.  
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Table 6: Simulation of the slip systems   

 
System 1 System 2 System 3 System 4 System 5 System 6 System 7 System 8 System 9 System 10 System 11 System 12 

S⨂
M 

0 0 0 -1 -1 -1 1 1 1 0 0 0 -1 1 1 1 -1 -1 0 0 0 -1 1 -1 1 -1 1 0 0 0 1 1 -1 1 1 -1 

1 1 1 0 0 0 -1 -1 -1 -1 1 1 0 0 0 1 -1 -1 -1 1 -1 0 0 0 1 -1 1 1 1 -1 -1 -1 1 0 0 0 

-1 -1 -1 1 1 1 0 0 0 1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 1 -1 1 0 0 0 1 1 -1 0 0 0 1 1 -1 

0.1 

0 0 0 -0.1 -0.1 -0.1 0.1 0.1 0.1 0 0 0 -0.1 0.1 0.1 0.1 -0.1 -0.1 0 0 0 -0.1 0.1 -0.1 0.1 -0.1 0.1 0 0 0 0.1 0.1 -0.1 0.1 0.1 -0.1 

0.1 0.1 0.1 0 0 0 -0.1 -0.1 -0.1 -0.1 0.1 0.1 0 0 0 0.1 -0.1 -0.1 -0.1 0.1 -0.1 0 0 0 0.1 -0.1 0.1 0.1 0.1 -0.1 -0.1 -0.1 0.1 0 0 0 

-0.1 -0.1 -0.1 0.1 0.1 0.1 0 0 0 0.1 -0.1 -0.1 -0.1 0.1 0.1 -0.1 0.1 0.1 -0.1 0.1 -0.1 0.1 -0.1 0.1 0 0 0 0.1 0.1 -0.1 0 0 0 0.1 0.1 -0.1 

0.2 

0 0 0 -0.2 -0.2 -0.2 0.2 0.2 0.2 0 0 0 -0.2 0.2 0.2 0.2 -0.2 -0.2 0 0 0 -0.2 0.2 -0.2 0.2 -0.2 0.2 0 0 0 0.2 0.2 -0.2 0.2 0.2 -0.2 

0.2 0.2 0.2 0 0 0 -0.2 -0.2 -0.2 -0.2 0.2 0.2 0 0 0 0.2 -0.2 -0.2 -0.2 0.2 -0.2 0 0 0 0.2 -0.2 0.2 0.2 0.2 -0.2 -0.2 -0.2 0.2 0 0 0 

-0.2 -0.2 -0.2 0.2 0.2 0.2 0 0 0 0.2 -0.2 -0.2 -0.2 0.2 0.2 -0.2 0.2 0.2 -0.2 0.2 -0.2 0.2 -0.2 0.2 0 0 0 0.2 0.2 -0.2 0 0 0 0.2 0.2 -0.2 

0.3 

0 0 0 -0.3 -0.3 -0.3 0.3 0.3 0.3 0 0 0 -0.3 0.3 0.3 0.3 -0.3 -0.3 0 0 0 -0.3 0.3 -0.3 0.3 -0.3 0.3 0 0 0 0.3 0.3 -0.3 0.3 0.3 -0.3 

0.3 0.3 0.3 0 0 0 -0.3 -0.3 -0.3 -0.3 0.3 0.3 0 0 0 0.3 -0.3 -0.3 -0.3 0.3 -0.3 0 0 0 0.3 -0.3 0.3 0.3 0.3 -0.3 -0.3 -0.3 0.3 0 0 0 

-0.3 -0.3 -0.3 0.3 0.3 0.3 0 0 0 0.3 -0.3 -0.3 -0.3 0.3 0.3 -0.3 0.3 0.3 -0.3 0.3 -0.3 0.3 -0.3 0.3 0 0 0 0.3 0.3 -0.3 0 0 0 0.3 0.3 -0.3 

0.4 

0 0 0 -0.4 -0.4 -0.4 0.4 0.4 0.4 0 0 0 -0.4 0.4 0.4 0.4 -0.4 -0.4 0 0 0 -0.4 0.4 -0.4 0.4 -0.4 0.4 0 0 0 0.4 0.4 -0.4 0.4 0.4 -0.4 

0.4 0.4 0.4 0 0 0 -0.4 -0.4 -0.4 -0.4 0.4 0.4 0 0 0 0.4 -0.4 -0.4 -0.4 0.4 -0.4 0 0 0 0.4 -0.4 0.4 0.4 0.4 -0.4 -0.4 -0.4 0.4 0 0 0 

-0.4 -0.4 -0.4 0.4 0.4 0.4 0 0 0 0.4 -0.4 -0.4 -0.4 0.4 0.4 -0.4 0.4 0.4 -0.4 0.4 -0.4 0.4 -0.4 0.4 0 0 0 0.4 0.4 -0.4 0 0 0 0.4 0.4 -0.4 

0.5 

0 0 0 -0.5 -0.5 -0.5 0.5 0.5 0.5 0 0 0 -0.5 0.5 0.5 0.5 -0.5 -0.5 0 0 0 -0.5 0.5 -0.5 0.5 -0.5 0.5 0 0 0 0.5 0.5 -0.5 0.5 0.5 -0.5 

0.5 0.5 0.5 0 0 0 -0.5 -0.5 -0.5 -0.5 0.5 0.5 0 0 0 0.5 -0.5 -0.5 -0.5 0.5 -0.5 0 0 0 0.5 -0.5 0.5 0.5 0.5 -0.5 -0.5 -0.5 0.5 0 0 0 

-0.5 -0.5 -0.5 0.5 0.5 0.5 0 0 0 0.5 -0.5 -0.5 -0.5 0.5 0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 0 0 0 0.5 0.5 -0.5 0 0 0 0.5 0.5 -0.5 

0.6 

0 0 0 -0.6 -0.6 -0.6 0.6 0.6 0.6 0 0 0 -0.6 0.6 0.6 0.6 -0.6 -0.6 0 0 0 -0.6 0.6 -0.6 0.6 -0.6 0.6 0 0 0 0.6 0.6 -0.6 0.6 0.6 -0.6 

0.6 0.6 0.6 0 0 0 -0.6 -0.6 -0.6 -0.6 0.6 0.6 0 0 0 0.6 -0.6 -0.6 -0.6 0.6 -0.6 0 0 0 0.6 -0.6 0.6 0.6 0.6 -0.6 -0.6 -0.6 0.6 0 0 0 

-0.6 -0.6 -0.6 0.6 0.6 0.6 0 0 0 0.6 -0.6 -0.6 -0.6 0.6 0.6 -0.6 0.6 0.6 -0.6 0.6 -0.6 0.6 -0.6 0.6 0 0 0 0.6 0.6 -0.6 0 0 0 0.6 0.6 -0.6 

0.7 

0 0 0 -0.7 -0.7 -0.7 0.7 0.7 0.7 0 0 0 -0.7 0.7 0.7 0.7 -0.7 -0.7 0 0 0 -0.7 0.7 -0.7 0.7 -0.7 0.7 0 0 0 0.7 0.7 -0.7 0.7 0.7 -0.7 

0.7 0.7 0.7 0 0 0 -0.7 -0.7 -0.7 -0.7 0.7 0.7 0 0 0 0.7 -0.7 -0.7 -0.7 0.7 -0.7 0 0 0 0.7 -0.7 0.7 0.7 0.7 -0.7 -0.7 -0.7 0.7 0 0 0 

-0.7 -0.7 -0.7 0.7 0.7 0.7 0 0 0 0.7 -0.7 -0.7 -0.7 0.7 0.7 -0.7 0.7 0.7 -0.7 0.7 -0.7 0.7 -0.7 0.7 0 0 0 0.7 0.7 -0.7 0 0 0 0.7 0.7 -0.7 

0.8 

0 0 0 -0.8 -0.8 -0.8 0.8 0.8 0.8 0 0 0 -0.8 0.8 0.8 0.8 -0.8 -0.8 0 0 0 -0.8 0.8 -0.8 0.8 -0.8 0.8 0 0 0 0.8 0.8 -0.8 0.8 0.8 -0.8 

0.8 0.8 0.8 0 0 0 -0.8 -0.8 -0.8 -0.8 0.8 0.8 0 0 0 0.8 -0.8 -0.8 -0.8 0.8 -0.8 0 0 0 0.8 -0.8 0.8 0.8 0.8 -0.8 -0.8 -0.8 0.8 0 0 0 

-0.8 -0.8 -0.8 0.8 0.8 0.8 0 0 0 0.8 -0.8 -0.8 -0.8 0.8 0.8 -0.8 0.8 0.8 -0.8 0.8 -0.8 0.8 -0.8 0.8 0 0 0 0.8 0.8 -0.8 0 0 0 0.8 0.8 -0.8 

0.9 

0 0 0 -0.9 -0.9 -0.9 0.9 0.9 0.9 0 0 0 -0.9 0.9 0.9 0.9 -0.9 -0.9 0 0 0 -0.9 0.9 -0.9 0.9 -0.9 0.9 0 0 0 0.9 0.9 -0.9 0.9 0.9 -0.9 

0.9 0.9 0.9 0 0 0 -0.9 -0.9 -0.9 -0.9 0.9 0.9 0 0 0 0.9 -0.9 -0.9 -0.9 0.9 -0.9 0 0 0 0.9 -0.9 0.9 0.9 0.9 -0.9 -0.9 -0.9 0.9 0 0 0 

-0.9 -0.9 -0.9 0.9 0.9 0.9 0 0 0 0.9 -0.9 -0.9 -0.9 0.9 0.9 -0.9 0.9 0.9 -0.9 0.9 -0.9 0.9 -0.9 0.9 0 0 0 0.9 0.9 -0.9 0 0 0 0.9 0.9 -0.9 

∑ 

0 0 0 -4.5 -4.5 -4.5 4.5 4.5 4.5 0 0 0 -4.5 4.5 4.5 4.5 -4.5 -4.5 0 0 0 -4.5 4.5 -4.5 4.5 -4.5 4.5 0 0 0 4.5 4.5 -4.5 4.5 4.5 -4.5 

4.5 4.5 4.5 0 0 0 -4.5 -4.5 -4.5 -4.5 4.5 4.5 0 0 0 4.5 -4.5 -4.5 -4.5 4.5 -4.5 0 0 0 4.5 -4.5 4.5 4.5 4.5 -4.5 -4.5 -4.5 4.5 0 0 0 

-4.5 -4.5 -4.5 4.5 4.5 4.5 0 0 0 4.5 -4.5 -4.5 -4.5 4.5 4.5 -4.5 4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 0 0 0 4.5 4.5 -4.5 0 0 0 4.5 4.5 -4.5 
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IV. CONCLUSION 

In this paper a MATLAB code was developed for the analysis 

of some deformations that magnetic shape memory materials 

can suffer when they are in cantilever conditions and to 

visualize the components of the strain tensor as the 

deformation is presented and above all to be able to speculate 

on its possible behavior as various parameters change such as 

the radius of curvature, direction of the magnetic field, the 

Poisson's ratio and dimensions of the sample. The code 

developed and presented in Appendix I achieves the above. 

It is worth mentioning that the high anisotropy of shape 

memory materials involves a variation in their behavior 

depending on the direction of analysis, as well as the variation 

in certain properties such as Poisson's ratio, which obviously 

cannot be considered constant, but which in the present work 

was considered a value equal to 0.33 since it is a value that 

appears frequently in some alloys with magnetic shape 

memory, see [19]. 

The incorporation of experimental information in the code, 

such as the dimensions of the sample or the radius of curvature 

measured directly and presented in Appendix II, allows data 

generation for the development of semi-empirical models that 

can increasingly approximate the behavior of these materials. 

This can be corroborated in Tables 2, 3 and 4, the data on the 

variation of the strain tensor allows us to see that in the case of 

90º this tensor has components with values greater than those 

of the other two directions. This initially assumes that the 

sample will experience greater deflection and possibly greater 

recovery once the magnetic field is removed, and this is 

verified in image 5. 

Table 6 has the objective of generating the widest amount of 

data on the variation of the tensor that represents the plastic 

part, for different slip systems. The slip systems used in the 

simulation correspond to the most studied for these alloys. 

Once the information on the elastic behavior (strain tensor) 

and the plastic part has been obtained, expression 10 can be 

used to be able to have a global representation of the tensor 

field that is generated with the total deformation of the 

material. In this first work, the need to generate as much data 

as possible about the shape of these two tensors has been 

prioritized. In later work, priority will be given to finding both 

the maximum and minimum forms of these tensors, as well as 

the possible slip systems and magnetic field directions that 

generate them. 

Finally, from the images obtained in Appendix III, it is 

possible to verify the elasto-plastic character of the 

deformation suffered by the Ni-Mn-Ga alloy once it has been 

subjected to the magnetic field and it has been removed. The 

empirical evidence and the results of the simulation allow to 

raise, at least hypothetically, the assumption that the behavior 

of these materials can be analyzed as a composition of two 

processes, one elastic (or pseudoelastic) in which experimental 

information such as radius of curvature and dimensions of the 

samples can be used and one purely plastic (reversible), which 

considers relevant information of the crystalline structure such 

as planes, directions and lattice parameters. 
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Appendix I: MATLAB code and Simulations 

classdefElasto_Plastic<matlab.apps.AppBase 

 

% Properties that correspond to app components 

properties (Access = public) 

 

%Properties that correspond to app variables 

properties (Access = private) 

Property % Description 

PlasticMatrix=zeros(3);     %Platic Matrix 

ElasticMatrix=zeros(3);     %Elastic Matrix 

Iterations=0;               %Iteration Value 

it=1;                       %Iteration Label value 

DCF=zeros(3);               %Dimensional Correction 

Factor 

U=sym(['0','0' ,'0']);      %Vector U 

GU=sym(zeros(3));           %Gradient of U 

GLV=0; 

End 

 

% Callbacks that handle component events 

methods (Access = private) 

 

% Code that executes after component creation 

function startupFcn(app) 

%Stablish de Identity Matrix for the Dimensional 

Correction 

%Factor 

app.tblCB.Data =  eye(3); 

end 

 

% Value changed function: cbxCB 

function cbxCBValueChanged(app, event) 

%Allows to enable the change of the Dimensional 

Correction 

%Factor 

if app.cbxCB.Value==true 

app.tblCB.Enable = 'on'; 

else 

app.tblCB.Enable = 'off'; 

end 

end 

 

% Button pushed function: btnIteration 

function btnIterationButtonPushed(app, event) 

%Change the current selected tab 

app.tbdPlastic.SelectedTab=app.SummationTab; 

%Set the number of iterations 

app.Iterations=app.txtIIteration.Value; 

app.lblnumber.Text=num2str(app.it); 
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%Set the dimensional correctio factor Matrix 

app.DCF=app.tblCB.Data; 

%Change the enable status of the buttons 

app.btnIteration.Enable=false; 

app.btnSumCal.Enable=true; 

end 

 

% Button pushed function: btnSumCal 

function btnSumCalPushed(app, event) 

%Create the variables 

TensorialProduct=zeros(3);  %Tensorial Matrix 

R=zeros(3);                 %Result Matrix 

gamma=app.Gamma.Value;      %Gamma 

%Vector M & S 

VectorM=[app.Mx.Valueapp.My.Valueapp.Mz.Val

ue]; 

VectorS=[app.Sx.Valueapp.Sy.Valueapp.Sz.Value]; 

%Calculate the Tensorial product of M & S, 

Gamma times 

%Tensorial Produt, and save add it to the plastic 

matrix 

for i=1:3 

for j=1:3 

TensorialProduct(i,j)=VectorS(i)*VectorM(j

); 

R(i,j)=TensorialProduct(i,j)*gamma; 

app.PlasticMatrix(i,j) = 

app.PlasticMatrix(i,j)+R(i,j); 

end 

end 

 

%Show the obtain values 

app.tblTensorialProduct.Data=TensorialProduct; 

app.tblTPTimesGamma.Data=R; 

app.tblSummation.Data=app.PlasticMatrix; 

%Check the remaining number of iteration 

if app.Iterations==1 

%The iteration loop has finished then: 

%Change the enable status in all the 

components of the 

%window 

app.btnSumCal.Enable=false; 

app.btnSumNext.Enable=true; 

app.Sx.Enable=false; 

app.Sy.Enable=false; 

app.Sz.Enable=false; 

app.Mx.Enable=false; 

app.My.Enable=false; 

app.Mz.Enable=false; 

app.Gamma.Enable=false; 

else 

%Update the iteration values 

app.Iterations = app.Iterations-1; 

app.it=app.it+1; 

app.lblnumber.Text=num2str(app.it);%Iteration 

Label Value 

%The iteration loop remains 

%Reset the values of gamma , vector S & M. 

app.Sx.Value=0; 

app.Sy.Value=0; 

app.Sz.Value=0; 

app.Mx.Value=0; 

app.My.Value=0; 

app.Mz.Value=0; 

app.Gamma.Value=0; 

end 

end 

 

% Button pushed function: btnSumNext 

function btnSumNextButtonPushed(app, event) 

%Change the current selected tab 

app.tbdPlastic.SelectedTab=app.IterationTab; 

%Change the enable status of the window items 

app.btnSumNext.Enable=false; 

app.btnNext_It.Enable=true; 

app.tblCB.Enable='off'; 

app.cbxCB.Enable=false; 

app.txtIIteration.Enable=false; 

%Calculate the plastic matrix 

app.PlasticMatrix = ((app.DCF^-

1)*app.PlasticMatrix)*app.DCF; 

%Show the plastic matrix 

app.tblPlastic.Data=app.PlasticMatrix; 

end 

 

% Button pushed function: Elastic_Cal 

function Elastic_CalButtonPushed(app, event) 

try 

%Store the values for the Vector U, entered by 

the user 

app.U = 

[str2sym(app.Ux.Value);str2sym(app.Uy.Value)

; 

str2sym(app.Uz.Value)]; 

syms x y z;%Create the variables for the 

symbolic calculus 

%Calculate the gradiant for Vector U 

for i=1:3 

var=['x' 'y' 'z']; 

for j=1:3 

app.GU(i,j)=diff(app.U(i),var(j)); 

end 

end 

 

%Evaluate the gradient, with user-entered 

values. 
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app.GU=subs(app.GU,{x,y,z},{app.Xval.Value,

app.Yval.Value, ... 

app.Zval.Value}); 

app.GU=double(app.GU); 

%Sum the gradiant matrix and its transposed 

FinalU=app.GU+app.GU'; 

%Obtain the elastic Matrix 

app.ElasticMatrix=0.5.*FinalU; 

%Show the calculated matrixes 

app.tblGu.Data=app.GU; 

app.tblGu_Eval.Data=FinalU; 

app.tblElastic.Data=app.ElasticMatrix; 

%Change the enable status of the buttons of the 

window 

%app.Elastic_Cal.Enable=false; 

app.Elastic_Next.Enable=true; 

catch ME 

%The program enter's here if there's an error 

if 

strcmp(ME.identifier,'symbolic:kernel:Division

ByZero') 

%Division by zero error 

warndlg('Division by zero','Error'); 

elseif 

strcmp(ME.identifier,'MATLAB:badsubscript') 

%Empty Vector U error 

warndlg('Please, fill all the parameters for 

vector U','Error'); 

elseif 

strcmp(ME.identifier,'MATLAB:UnableToCon

vert')||strcmp( ... 

ME.identifier,'symbolic:str2sym:UnableToC

onvert') 

%Syntax Error 

warndlg('Syntax Error. Please check the 

function','Error'); 

end 

end 

end 

 

% Button pushed function: btnNext_It 

function btnNext_ItButtonPushed(app, event) 

%Change the current tab 

app.TabGroup.SelectedTab=app.ElasticTab; 

%Change the enable status of the buttons 

app.btnNext_It.Enable=false; 

app.Elastic_Cal.Enable=true; 

end 

 

% Button pushed function: Elastic_Next 

function Elastic_NextButtonPushed(app, event) 

%Change the current tab 

app.TabGroup.SelectedTab=app.ResultTab; 

%change the enable status ob the elastic tab 

components 

app.Elastic_Next.Enable=false; 

app.Ux.Enable=false; 

app.Uy.Enable=false; 

app.Uz.Enable=false; 

app.Xval.Enable=false; 

app.Yval.Enable=false; 

app.Zval.Enable=false; 

%Enable the graph button 

app.btnGraph.Enable=true; 

%Show in the final tab the elastic and plastic 

matrixes, and 

%the sum of this two 

app.tblFinalPlasticValue.Data=app.PlasticMatrix; 

app.tblFinalElasticValue.Data=app.ElasticMatrix; 

app.tblFinalMatrix.Data=app.ElasticMatrix+app.Pla

sticMatrix; 

end 

 

% Button pushed function: PlotButton 

function PlotButtonPushed(app, event) 

x=0:0.1:1; %Create Vector X & Z 

z=0:0.1:1; 

R=app.REditField.Value; %Get the ratio value 

for i=1:1:11 %Calculate the new X values  

z(i)=-(x(i)^2/(2*R));  

end  

%Plot the ratio 

plot(app.CurvatureAxes,x,z,'DisplayName',strcat('R

=',num2str(R))); 

%Show th legend 

legend(app.CurvatureAxes,'show','Location','south

west'); 

%Re-size the plot if required 

if(z(11)<app.GLV) 

%If the new graph's lower value its lower than the 

previous one 

app.GLV=z(11); %Update de value. 

end 

axis(app.CurvatureAxes,[0 1 app.GLV 0.20]); 

end 

 

% Value changed function: HoldPlotSwitch 

function HoldPlotSwitchValueChanged(app, event) 

%Hold the ratio Plot 

value = app.HoldPlotSwitch.Value;  

hold(app.CurvatureAxes,lower(value)); 

end 

end 
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% Component initialization 

methods (Access = private) 

% App creation and deletion 

methods (Access = public) 

end 

 

Appendix II. Experimental bending strain data 

       Bending strain can be calculated by relating some 

parameters of the dimensions of the specimen and the radius 

of curvature observed. The bending strain can be calculated as 

follows: 

ɛ𝐵 =
𝑑 ∗ 𝑘

2
 

Where: 

d = width of the sample 

k = 1/R, where R represents the radius of curvature 

 

       The image analysis of about 3000 photos with a 

MATLAB code provided by Boise State University, Idaho, 

was done, the variation of bending strain was analyzed 

throughout the experiment and the degree of recovery of the 

material after reaching the maximum deformation and remove 

the magnetic field gradually. The following experimental data 

was obtained. 

 

Table 7: Bending strain (ɛB) vs Magnetic Field (T), Θ = 45° 

Bending 

strain (ɛB) 

Magnetic 

Field (T) 

K 

(mm) 

-0.25 0.1 1 

-0.67 0.2 2.68 

-1.29 0.3 5.16 

-1.49 0.4 5.96 

-1.56 0.5 6.24 

-1.87 0.6 7.48 

-2.26 0.7 9.04 

-2.49 0.8 9.96 

-2.7 0.9 10.8 

-2.93 1 11.72 

-3.02 1.1 12.08 

-3.2 1.2 12.8 
 

 

Table 8: Bending strain (ɛB) vs Magnetic Field (T), Θ = 45°(removing the 

field) 

Bending 

strain (ɛB) 

Back 

Magnetic 

Field (T) 

K 

(mm) 

-2.18 0.1 8.72 

-2.41 0.2 9.64 

-2.6 0.3 10.4 

-2.72 0.4 10.88 

-2.69 0.5 10.76 

-2.83 0.6 11.32 

-2.93 0.7 11.72 

-3.05 0.8 12.2 

-3.19 0.9 12.76 

-3.14 1 12.56 

-3.23 1.1 12.92 

-3.2 1.2 12.8 

 

 

 

Figure 7: Bending strain and bending strain back, Θ = 45o 

 

Table 9: Bending strain (ɛB) vs Magnetic Field (T), Θ = 90° 

Bending 

strain (ɛB) 

Magnetic 

Field (T) 

K 

(mm) 

-0.92 0.1 3.68 

-3.96 0.2 15.84 

-3.67 0.3 14.68 

-3.7 0.4 14.8 

-3.28 0.5 13.12 

-3.49 0.6 13.96 

-3.54 0.7 14.16 

-3.25 0.8 13 

-3.47 0.9 13.88 

-2.82 1 11.28 

-2.66 1.1 10.64 

-2.84 1.2 11.36 
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Table 10: Bending strain (ɛB) vs Magnetic Field (T), Θ = 90°(removing 

the field) 

Bending 

strain (ɛB) 

Back 

Magnetic 

Field (T) 

K 

(mm) 

-2.7 0.1 10.8 

-2.72 0.2 10.88 

-2.92 0.3 11.68 

-2.85 0.4 11.4 

-2.86 0.5 11.44 

-2.61 0.6 10.44 

-2.79 0.7 11.16 

-2.7 0.8 10.8 

-2.73 0.9 10.92 

-2.85 1 11.4 

-2.85 1.1 11.4 

-2.84 1.2 11.36 

 

 

 

 

Figure 8: Bending strain and bending strain back, Θ = 90° 

 

 
 

Table 11: Bending strain (ɛB) vs Magnetic Field (T), Θ = 135° 

Bending 

strain (ɛB) 

Magnetic 

Field (T) 

K 

(mm) 

-0.25 0.1 1 

-0.19 0.2 0.76 

-0.16 0.3 0.64 

-0.04 0.4 0.4 

0.19 0.5 0.76 

1.19 0.6 4.76 

1.96 0.7 7.84 

2.29 0.8 9.16 

2.47 0.9 9.88 

2.67 1 10.68 

2.7 1.1 10.8 

2.82 1.2 11.28 

 

 

 

Table 12: Bending strain (ɛB) vs Magnetic Field (T), Θ = 135° (removing 

the field) 

Bending 

strain (ɛB) 

Back 

Magnetic 

Field (T) 

K 

(mm) 

1.8 0.1 7.2 

2.06 0.2 8.24 

2.32 0.3 9.28 

2.35 0.4 9.4 

2.6 0.5 10.4 

2.68 0.6 10.72 

2.69 0.7 10.76 

2.86 0.8 11.44 

2.85 0.9 11.4 

2.67 1 10.68 

2.88 1.1 11.52 

2.82 1.2 11.28 

 

 

 

 

 

 

Figure 9: Bending strain and bending strain back, Θ = 135° 
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Appendix III a: Simulations for the variation of radius of curvature. Increasing magnetic field 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Variation of radius of curvature at 45º  
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Figure 11: Variation of radius of curvature at 90º  
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Figure 12: Variation of radius of curvature at 135º  
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Appendix III b: Simulations for the variation of radius of curvature. Decreasing magnetic field 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Variation of radius of curvature at 45º  
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Figure 14: Variation of radius of curvature at 90º  
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Figure 15: Variation of radius of curvature at 135º  
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