
International Research Journal of Innovations in Engineering and Technology (IRJIET) 

ISSN (online): 2581-3048 

Volume 5, Issue 8, pp 94-101, August-2021 

https://doi.org/10.47001/IRJIET/2021.508016  

© 2021-2017 IRJIET All Rights Reserved                    www.irjiet.com                                           94                                                                    
 

A Newly Proposed Ambidextrous Software Testing Model 

Based on Conventional Black Box Testing Strategy Using 

the Applications of Gaussian Distribution 
1
Shivankur Thapliyal, 

2
Renu Bahuguna 

1Assistant Professor, Computer Science and Engineering, Doon Institute of Engineering and Technology, Rishikesh, Uttarakhand, 

India 
2Head of Department, Computer Science and Engineering, Doon Institute of Engineering and Technology, Rishikesh, 

Uttarakhand, India 

Abstract - To Tests Software Systems with all of its aspects 

and areas are really very typical and challenging tasks for 

today’s Software Engineering issues. Bug free and fully 

tested software systems are very typical to build or 

manufacture and one of the most challenging tasks for 

recent software industries issues in today’s information 

age, because many software systems crash out or failure 

due to the reason of bug presence, or partial testing 

approach or not fully tested the software systems and 

missing the  examine of the behavior of the software 

systems with all of its input values, but it’s a very complex 

and typical tasks to tests any software systems with all of 

its possible input tests values. So the need of the hour is we 

have some potential and robust software system testing 

model which are responsible and also capable to tests any 

software system product with all of its functionalities with 

including all areas and investigate or to examine the 

behavior of software system for all of its possible input 

tests values with also achieve greater reliability. Some 

Black Box testing strategies such as Equivalent 

Partitioning and Boundary Value Analysis (BVA), which 

are responsible to provide range of input vales among 

multiple values, but we don’t have any strict mechanisms 

to filter or to select some input tests values among the set 

of multiple input tests, because the major reason behind 

the software crisis and software failures are that we don’t 

check software systems with all of its input values or 

missing to notify the behavior of software systems for some 

particular input, Here we proposed a robust software 

testing model, which adopts the mechanisms of Gaussian 

Distribution for selection of input data and work at the 

module level of software systems and this model also 

applies with each module of software systems. 

Keywords: Software Testing model, Black Box testing 

strategies, Gaussian based Software testing model, Software 

testing strategies. 

 

I. INTRODUCTION 

Software Testing are one of the most challenging issues in 

today’s Software Engineering Concepts [1]. To Test software 

with all its functionalities and its major tasks orientation 

specifications are really a very typical and challenging issues 

for today’s software development industries. In the Real 

environment scenarios, most of the software crises [2] and 

software failures [3] are to done through some bugs which 

reported on the software systems and strictly related to the 

functionality of software systems. So the need of the hour is 

that we have some strong potential software testing 

methodology [4] or mechanisms which strictly navigate or to 

discover bugs or errors and software failures [6] 

misconceptions in a very easily manner, because the main 

reason which is responsible for behind the software failures 

are that we have not an appropriate or adequate mechanisms, 

which tests software at all aspects corresponding to it’s all 

branching conditions and looping or jumping statements, and 

also a one major reason behind that, we doesn’t tests software 

for all of its input values or not to draw  all test cases related to 

all input values. In this model we proposed a new software 

testing model which tests values for all of its input cases and 

also defines the major importance of its input values. In the 

previous developed software testing methodology to draw or 

design test cases, we generally adopt some traditional 

mechanisms such as equivalent partitioning [7,11,14] and 

Boundary Value Analysis (BVA) [8,9,11,14] to design tests 

cases for all of its inputs, but In this previously developed 

traditional approach based model also contains many 

misconceptions that it’s doesn’t tests software for all of its 

input cases and very slow to perform, but In this newly 

proposed software testing model we adopts or to use Statistical 

Distribution [10]. There are many distributions are available 

for mapping any value with its probability density function 

[10] with its importance, which based upon the nature of the 

variable, which is discrete and continuous in nature. Here with 

the use of probability density function [10] we find out the 

importance of each values to look through the probabilistic 



International Research Journal of Innovations in Engineering and Technology (IRJIET) 

ISSN (online): 2581-3048 

Volume 5, Issue 8, pp 94-101, August-2021 

https://doi.org/10.47001/IRJIET/2021.508016  

© 2021-2017 IRJIET All Rights Reserved                    www.irjiet.com                                           95                                                                    
 

value and their occurring patterns, so for using this 

methodology, we tests software with all of its aspects with all 

of its input values, so we examine or tests software in a very 

efficiently manner. Here we proposed or adopted a modular 

designing approach [11] of software system architecture 

[12,13], which work with all of its module in a very similar 

manner, but the working criteria of all modules are must be 

different. To tests a software with all of its aspects such as:  

code coverage and path coverage or branching and looping are 

really a very challenging and typical concepts. But In this 

newly proposed model we don’t require or examine any 

WHITE BOX TESTING [14] methodology, here we adopt 

some BLACK BOX [14] testing methodology which works in 

a very fast efficient manner, but here we only checked the 

functionality of the software with all of its aspect of the 

software system in a new manner, we don’t check any non-

functional requirements such as the code coverage, branch 

coverage, looping and some jumping statements of the 

software systems. So that’s why we will design all of its test 

cases with all of its  input values using this newly proposed 

methodology for software systems architecture. Because 

Normal Distribution [10] or Gaussian distribution [10] are bell 

shaped curve, which describe or to define all of its values with 

probability density functions. To pick up any values we find 

out the importance factor of each values using the Gaussian 

Probability Density function [10]. We will design test cases 

for all inputs, which contains a low probabilistic value or those 

which contains a high probabilistic value. We also design test 

cases for invalid inputs. We will check any software systems 

with all of its functional area using this model in a very 

efficient and reliable manner. Its Computational Cost are very 

low and gives an accurate result and have capability to easily 

detect some error prone areas inside the software system 

architecture. Now the working mechanisms of this model are 

detailed define in the upcoming section of this research paper. 

II. SOME PREVIOUSLY KNOWN METHODOLOGY 

Equivalence Partitioning: In this methodology we 

partitioned some input values into some range of values, In 

detailed we can say that if we have multiple inputs varieties 

then In the mechanisms of Equivalent Partitioning we 

partitioned or range the values of inputs which gives similar 

types of output or which behaviors are same. In general we 

can say that Equivalence partitioning or equivalence class 

partitioning (ECP) is a software testing technique or strategy 

that divides or partitioned the input data of a software unit into 

partitions of equivalent or similar  data from which test cases 

can be derived. In this mechanisms of equivalent partitioning a 

very reliable and accurate test cases have to generate such as 

test cases are easy to generate for all input values using the 

mechanisms of Equivalent Partitioning. The concepts of 

Equivalent Partitioning come from the Equivalence Relation. 

Equivalent Partitioning are the strategy of Black Box testing 

technique, where the number of inputs are to be divided into 

some similar classes. In equivalence portioning, equivalence 

classes are evaluated for given input conditions. Whenever 

any input is given, then type of input condition is checked, 

then for this input conditions, Equivalence class represents or 

describes set of valid or invalid states. 

Guidelines for Equivalence Partitioning: 

 If we gives the range condition as an input then one valid 

and two invalid equivalences classes are to be defined. 

 If a specific values are gives as an input, then also one 

valid and two invalid inputs are to be defined. 

 If we gives some member of a set as an input, then one 

valid and one invalid equivalence classes are to be 

defined. 

 If we gives Boolean number as an input, then also one 

valid and one invalid equivalences classes are to be 

defined. 

 

Fig. a: Example of Equivalent Partitioning 

Boundary Value Analysis (BVA): In the concept of 

Boundary Value Analysis (BVA) we test any software 

systems at the boundaries such as if we take a range of input 

values such as 0-100, then we check software systems at -1 

and 101 for invalid cases and 0 and 100 for valid cases 

corresponding to range, because a software systems provides 

some abnormal results at the boundaries of the range of the 

input values. Boundary Value Analysis (BVA) are testing 

strategy of Black Box Testing where any software product 

have to be tested at extremely ends because a software can 

give some abnormal and unsatisfactory results at the boundary 

of the input partitioning. These extremely ends like Start-End, 

Upper-Lower, Maximum-Minimum, these are called the 

boundary values of any input partition. 

The basic idea in normal boundary value testing is to select 

input variable values at their: 

 Minimum 

 Just above the minimum 

 A nominal value 

 Just below the maximum 

 Maximum 



International Research Journal of Innovations in Engineering and Technology (IRJIET) 

ISSN (online): 2581-3048 

Volume 5, Issue 8, pp 94-101, August-2021 

https://doi.org/10.47001/IRJIET/2021.508016  

© 2021-2017 IRJIET All Rights Reserved                    www.irjiet.com                                           96                                                                    
 

 

Fig. b: Diagrammatic representation of Boundary Value Analysis 

In Boundary Value Analysis, Equivalence Partitioning 

play’s a good role. Boundary Value Analysis comes after the 

Equivalent Partitioning. 

III. A NEWLY PROPOSED MODEL FOR TESTING 

The diagrammatic representation of this Software Testing 

model is representing in fig c: 

This software testing model applies on each modules of the 

while software product, generally at the broad level this model 

comes under the category of Black Box Testing, because these 

model checks the functionalities of the software systems rather 

the code coverage and branch coverage or some looping or 

jumping. Because to test overall functionalities of the software 

with tracing or investigate and examine each path or branching 

coverage are really a very typical tasks. So In this Paper we 

modeled some Black Box testing strategies for conduct a 

software testing in a very easy and reliable manner. Now we 

describe these models by using some phases or steps: 

First phase: In the first phase we categorized data into 

various categories which based on their types, behaviors and 

their tasks to perform. We categorized data into three types 

which is: 

 Numeric Data 

 Textual Data 

 File Data 

Further Numeric data also subdivided into some types such 

as the floating point numbers, or some integers numbers, 

similarly textual data further subdivided into some categories 

and file data are further subdivided into image, audio, video, 

documents or some pdf files. After categorized data into some 

categories, the next step is applying some interval arithmetic 

and initializes the range of values, which will be the tests by 

the software module. But this type of range are easy to 

developed with Numeric Data, but data like textual or file type 

it’s very complex to define the range especially textual and 

image or some multimedia data, so here for textual and file 

data we assign some random numeric identity, this process are 

called the Randomization after Randomization of textual data 

and some file data, we applying the interval arithmetic to 

define the range. 

Second Phase: In the second phase we are applying the 

Gaussian Distribution on that ranges of data. Here we applies 

Gaussian Distribution behind the reason is that Gaussian 

Distribution defines the probability of each number which 

existing in the range of values and it’s a continuous 

probabilistic distribution where each numbers we assign a 

unique probability for their occurrence, so with the use of 

probability, we better tests each values which placed in our 

test case and better observe or explore the behavior of 

software system on each value. Gaussian Distribution also 

called the Normal Distribution or Laplacian Distribution. 

Because in the Gaussian Distribution values which are near far 

the means contains a high probability relatively to those which 

are far away from mean. Generally Gaussian Distribution 

works on the theorem of Central Tendency, Here the middle 

line represents the mean of the sample size or ranges, and 

other values which puts between the ranges are equally 

distributed both sides of the means, that’s why it’s contains a 

bath tub curve. It’s a continuous probabilistic distribution, so 

using the mechanisms of probability we better tests software 

systems with each values and select or filter values for tests 

through their respective probabilities and it’s gives a crisp 

clearance about values that, which values have to select for 

testing. The detailed about Gaussian Distribution are as 

follows: 

Gaussian Distribution [16] are also known as the Normal 

Distribution [16] or the Laplace Distribution [16] . It is a 

continuous probability distribution which based on some 

probabilistic approach and works on real valued numbered 

variables. In this distribution we have a sample size of various 

random numbers and we find out the occurring probability of 

each numbers using some mathematical and statistical 

techniques. Gaussian Distribution [16] contains some 

probability density function. The formula of this probability 

density function are as follows: 

𝑓 𝑥 =  
1

 2𝜋
𝜎 𝑒−

1

2
(
𝑥−𝜇

𝜎
)2

 

The parameter 𝜇 is the mean or expectation of the 

distribution (also it’s median and mode), while the parameter 

𝜎 is it’s standard deviation. The Variance of the distribution is 

𝜎2. A random variable with a Gaussian distribution is said to 

be normally distributed, and is called a normal deviate. 

Normal distributions play’s a much significant role 

in statistics and are frequently used in the physics and 

mathematical modelling to represent real-valued random 

variables whose distributions are not known. It’s works on 

Central Limit Theorem. It states that, under some conditions, 

the average of various samples (observations) of a random 

variable with finite mean and variance is itself a random 

variable—whose distribution converges to a normal 

distribution as the number of samples increases. Therefore, 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Convergence_in_distribution


International Research Journal of Innovations in Engineering and Technology (IRJIET) 

ISSN (online): 2581-3048 

Volume 5, Issue 8, pp 94-101, August-2021 

https://doi.org/10.47001/IRJIET/2021.508016  

© 2021-2017 IRJIET All Rights Reserved                    www.irjiet.com                                           97                                                                    
 

physical quantities that are expected to be the sum of many 

independent processes, such as measurement errors, extremely 

have distributions that are nearly normal.  

Moreover, Gaussian distributions [16] contains some 

unique properties and features that are valuable in analytic 

studies and mathematical modelling. For instance, any linear 

combination of a fixed collection of normal deviates is a 

normal deviate. Many results and methods, such 

as propagation of uncertainty and least squares parameter 

fitting, can be derived analytically in explicit form when the 

relevant variables are normally distributed. 

A normal distribution [16] is sometimes informally called 

a bell curve. However, many other distributions are bell-

shaped (such as the Cauchy, Student's t, 

and logistic distributions). 

Normal distribution, which is frequently known as the 

Gaussian distribution [16] or Laplace distribution [16], is 

a probability distribution that is symmetric about the mean, 

showing that data near about the mean are more frequent in 

occurrence than data far from the mean. In graph form, normal 

distribution will appear as a bell curve. 

 

Fig. c: Graph of Normal Distribution 

 

Fig. d: Probability Density Function of Normal Distribution 

 

Fig. e: Commulative Distribution Function of Normal Distribution 

Table 1: Significant expressions of Gaussian Distributions 

Notation 𝑁(𝜇 ,𝜎2) 

PDF 
𝑓 𝑥 =  

1

 2𝜋
𝜎 𝑒−

1

2
(
𝑥−𝜇

𝜎
)2

 

 

CDF 
1

2
 [1 + erf(

𝑥 − 𝜇

 2
𝜎

) 

Quantile 𝜇 +  2 
𝜎

𝑒𝑟𝑓−1(2𝑝 − 1) 

Mean 𝜇 

Median 𝜇 

Mode 𝜇 

Variance 𝜎2 

MAD  2 𝜋 
𝜎

 

Entropy 
1

2
log 2𝜋𝜎2 +

1

2
 

MGF exp(𝜇𝑡 + 𝜎2𝑡2/2) 

CF exp(𝑖𝜇𝑡 − 𝜎2𝑡2/2) 

Fisher 
Information 

𝐼 𝜇 ,𝜎 =   
1/𝜎2 0

0 2/𝜎2  

𝐼 𝜇 ,𝜎2 =   
1/𝜎2 0

0 1/(2𝜎4)
  

 
 

Kullback- 

Leibler 
divergence 

1

2
 { 

𝜎0

𝜎1
 

2
+

 𝜇1−𝜇0 
2

𝜎1
2 − 1 + 2𝐼𝑛

𝜎1

𝜎0
 } 

 

https://en.wikipedia.org/wiki/Measurement_error
https://en.wikipedia.org/wiki/Propagation_of_uncertainty
https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Cauchy_distribution
https://en.wikipedia.org/wiki/Student%27s_t-distribution
https://en.wikipedia.org/wiki/Logistic_distribution
https://www.investopedia.com/terms/p/probabilitydistribution.asp
https://www.investopedia.com/terms/b/bell-curve.asp


International Research Journal of Innovations in Engineering and Technology (IRJIET) 

ISSN (online): 2581-3048 

Volume 5, Issue 8, pp 94-101, August-2021 

https://doi.org/10.47001/IRJIET/2021.508016  

© 2021-2017 IRJIET All Rights Reserved                    www.irjiet.com                                           98                                                                    
 

 

Fig. f: A newly proposed Gaussian distribution based Software testing 

model 

Third Phase: In the third phase we designed test cases for 

each module and write the actual results on test case. Now 

after designing the test cases of each module, at the end we 

compare the resultant data with expected data and find out the 

error rate or success percentage through comparing and after 

do the detailed analysis we validate the test data. We also 

design test cases for invalid inputs or those inputs which occur 

rarely, because to decide that which inputs occur frequently or 

rarely are clearly decided through the probability of that 

number. This model gives much accuracy and clearance about 

the selection of input tests data. Because to tests or validate 

any software systems with all path coverage and branching 

coverage are really a very typical and complex tasks, so with 

the use of Gaussian Distribution we easy this tasks and also 

take concern the accuracy and clearance of tests data inputs. 

There are many distributions are available such as Binomial 

Distribution, chi-square Distribution , Discrete unit 

distribution, Cauchy Distribution, but here we elicit the 

Gaussian or Normal Distribution, because this distribution 

contains the continuous probabilistic distribution, that’s why 

it’s distribute each numbers which is within the range based 

on their probability. So these are the three phases of this 

model. This model equally applies on each of the modules of 

the software product, because In the previous models of Black 

Box testing are Equivalence Partitioning and Boundary Value 

Analysis (BVA), but in this model we also make some range 

of input values, but we don’t have any mechanisms that we 

decided which input gives best results or which gives worst 

result before tests any software systems, but In this newly 

proposed model, we easily decided that which inputs 

occurrence pattern frequently or not, and which inputs occur 

rarely based on the probability of that number, so that’s why 

we easily take judgments for occurring patterns of the inputs.  

IV. FUTURISTIC SCOPE AND IT’S APPLICATIONS 

Software testing is one of the most challenging issues for 

today’s information age and software industry issues. 

Software Testing contains a very typical and complex 

procedure to draw out an exact outcomes corresponding to 

particular input in the form of test cases and test suits. Because 

a most significant activity, which is Software Quality 

Assurance are totally based on the designing or modelling of 

the test cases, but in today’s software engineering scenario it’s 

very hard to draw or to find out test cases for each of its 

values, which placed on the interval set. So how we draw out 

potential mechanisms to assured that this system works 

perfectly or adequately and also contains reliability features 

without reporting or to examine some bugs or errors are to be 

placed inside the code coverage of software modules are major 

issues for today’s Software Engineering issues. Black Box 

testing are the most significant testing methodology, which 

tests software with whole aspects which based on their 

functionalities and task oriented or task perform features of 

software systems, but again a one major questions have to 

arise that can we test software as a whole with all of its input 

values, unfortunately the answer of this question are No, 

because when we making some interval set of the values then 

it’s very hard to tests each value which placed inside the 

interval, so here we elicit value based on the Random manner, 

that’s why to judge or to examine or notify behavior of the 

some elements are have to be missing. But In this newly 

proposed model, we use some statistical techniques and 

distribution theory with the interval arithmetic.  

Here we adopt the Gaussian or Normal distribution, 

because this distribution are based on some probability 

features and contains continuous distributions approach, that’s 

why we elicit values based on their probability. Using the 

probability features of values we judge that which value 

occurring utmost during task performing and we also judge or 



International Research Journal of Innovations in Engineering and Technology (IRJIET) 

ISSN (online): 2581-3048 

Volume 5, Issue 8, pp 94-101, August-2021 

https://doi.org/10.47001/IRJIET/2021.508016  

© 2021-2017 IRJIET All Rights Reserved                    www.irjiet.com                                           99                                                                    
 

examine those elements behavior which contains lower 

probability, because Gaussian Distribution works on the 

concepts of the theorem of Central of Tendency, here a middle 

line represents the means and left or right side along the means 

the elements are equally distributed based on their 

probabilities. Using the probabilistic features we optimize the 

error rate and increase the bug detection. Using this newly 

proposed model the failures rates of software in the near future 

are strictly optimum. This model also suitable for following 

major applications of Software Engineering Issues such as: 

 Real time and Simulation based Software Systems 

tests. 

 Some Automated framework for complex software 

projects. 

 API testing methodology. 

 Checked Quality Assurance and Quality Control of 

Software Management issues. 

There are various automated software testing software 

such as Selenium, HPE Unified Functional Testing, Test 

Complete etc. which pick value from in the interval set in the 

Randomized manner, so using or to applying Gaussian 

Distribution gives a better results for to design tests cases and 

tests suits. 

To design test cases and tests suits for any software 

systems are really a very complex and typical tasks, because 

tests cases or tests suits defined the overall mechanisms and 

functionality of the software systems, and black box testing 

play’s a major role for designing tests cases, but various 

previously developed traditional black box testing strategies 

such as: Equivalent Partitioning, and Boundary Value analysis 

divide or partitioned some set of numbers into similar classes 

or to do check software behavior at extreme ends respectively, 

but here both these model picks value in the Randomized 

manner, but in this newly proposed model we use some 

distributions mechanisms such as Gaussian or normal 

distribution whereas each number defined based on their 

probability and we select particular input based on their 

probability, because these probability defines the occurring 

patterns of particular input, which provides reliability to select 

input and tests the behavior of  software systems on that input. 

So there are many improvisations have to be done in this 

model in the upcoming future and this model is very 

significant to release a bug free software product. 

V. CONCLUSION 

This newly proposed model comes under the category of 

Black Box Testing methodology, because this newly proposed 

model examine and compile the functionalities of the software 

systems rather path coverage or code coverage or some 

branching and lopping, but In the previously developed Black 

Box testing strategies such as Equivalent Partitioning and 

Boundary Value Analysis (BVA), are also defining the range 

of the values, but it’s not give a crisp clearance and reliability 

about the selection of the inputs, that In other words we have 

to say that some previously developed Black box testing 

strategies also provides the range of input tests values, but it’s 

not give the reliability to select or filter the input values 

among multiple values which placed within the range that 

which input values have to be selected for tests data, because 

it’s impossible to tests software systems with all of its input 

values so we have not any mechanisms to select a desired 

input values for tests which behavior are either positive (Best) 

or negative (worst). But In this newly proposed model we use 

the Gaussian Distribution to select or filter input values based 

on their probability, because distribution is the perfect 

methodology for selecting and filtering input values among 

the set of multiple values. Now a one reason behind the use of 

Gaussian distribution is that it’s a continuous probabilistic 

distribution that works on the theorem of the Central of 

Tendency because it’s equally distributed values along the 

means according to their respective probability values. So 

using the mechanisms of probability we easily select or filter 

inputs for tests data among the set of multiple input values. 

This model works with the modular approach of software 

system architecture because this model equally applies on 

each module of the software systems. Some previously Black 

Box testing methodologies such as Equivalent Partitioning and 

Boundary Value Analysis (BVA) provides the range of the 

input values so we filter or to select value from these range 

through Randomization or Randomly because it’s very typical 

and complex to tests all input values and impossible to tests a 

whole software systems with each nook and corner so we 

don’t achieve desired output or we don’t easily examine the 

behavior of the software systems with it’s input tests values, 

because we take tests data as a input through the mechanisms 

of randomization, but In this newly proposed model we take 

tests data with the mechanisms of Gaussian Distribution. 

Gaussian Distribution is a continuous probabilistic 

approach based distribution, which equally distributes values 

based on their probabilities, so for filtering or to selection of 

any input values through their occurrence probability gives 

better results as compare to Randomization mechanisms.  So 

with the use of Gaussian Distribution this model becomes a 

fundamental Black Box testing method, which tests or to 

explore each aspects of software systems in a very reliable 

manner. This model also categorized data into different 

categories such as Numeric data, Textual data or some other 

files data generally called the multimedia data such as image, 

audio, video or some document files etc. so for numeric data 

we easily finding range using the Interval Arithmetic, but for 

some file data such as image, or some textual data we assign a 



International Research Journal of Innovations in Engineering and Technology (IRJIET) 

ISSN (online): 2581-3048 

Volume 5, Issue 8, pp 94-101, August-2021 

https://doi.org/10.47001/IRJIET/2021.508016  

© 2021-2017 IRJIET All Rights Reserved                    www.irjiet.com                                           100                                                                    
 

unique integer value for each data item using the mechanisms 

of Randomization, then further we apply Interval Arithmetic 

on these values. So here categorization of data also a biggest 

milestone for successfully tests software systems with whole 

aspects. We design test cases also for invalid inputs, so at the 

end we also compare our actual resultant data set with the 

expected data set and compare the accuracy and correctness of 

our tests. After done the detailed analysis of data sets at the 

end we validate the test cases. So this mechanisms applying on 

each of the module of the software systems, so it’s also work 

with module level. Using this model for tests any software 

systems functionalities we tests software product in a very 

reliable and accurate manner. 

ACKNOWLEDGEMENT 

We are very much grateful to all respected professors of 

DIET Rishikesh for their kind help, lasting encouragement, 

valuable suggestion throughout the entire period of our project 

work. We are highly indebted to his astute guidance, sincere 

support and boosting confidence to make this Research 

successful. The acknowledgment will be incomplete if we fail 

to express our obligation and reverence to our family members 

and friends whose moral support is great factor in doing this 

research. 

FUNDING 

This study was not funded by any other profitable or non-

profitable organisations. 

CONFLICT OF INTEREST 

The authors declare that they have no conflict of interest. 

REFERENCES 

[1] P. Ron. Software testing. Vol. 2. Indianapolis: Sam’s, 

2001.  

[2] S. Amland, "Risk-based testing:" Journal of Systems 

and Software, vol. 53, no. 3, pp. 287–295, Sep. 2000. 

[3] Redmill and Felix, ―Theory and Practice of Risk-based 

Testing‖, Software Testing, Verification and 

Reliability, Vol. 15, No. 1, March 2005. 

[4] B. Agarwal et al., ―Software engineering and testing‖. 

Jones & Bartlett Learning, 2010. 

[5] K. Bogdan. ―Automated software test data generation‖. 

Software Engineering, IEEE Transactions on 16.8 

(1990): 870-879. 

[6] Jacobson et al. The unified software development 

process. Vol. 1. Reading: Addison-Wesley, 1999. 

[7] Everett et al., ―Software testing: testing across the 

entire software development life cycle‖. John Wiley & 

Sons, 2007. 

[8] J.Irena. ―Software Testing Methods and Techniques‖, 

2008, pp. 30-35. 

[9] Guide to the Software Engineering Body of 

Knowledge, Swebok, A project of the IEEE Computer 

Society Professional Practices Committee, 2004. 

[10] E. F. Miller, ―Introduction to Software Testing 

Technology‖, Software Testing & Validation 

Techniques, IEEE, 1981, pp. 4-16 

[11] M. Shaw, ―Prospects for an engineering discipline of 

software,‖ IEEE Software, November 1990, pp.15-24 

[12] D. Nicola et al. "A grey-box approach to the functional 

testing of complex automatic train protection systems." 

Dependable Computing-EDCC 5. Springer Berlin 

Heidelberg, 2005. 305-317. 181 

[13] J. A. Whittaker, ―What is Software Testing? And Why 

Is It So Hard?‖ IEEE Software, 2000, pp. 70-79. 

[14] N. Jenkins, ―A Software Testing Primer‖, 2008, pp.3-

15. 

[15] Luo, Lu, and Carnegie, "Software Testing 

TechniquesTechnology Maturation and Research 

Strategies’, Institute for Software Research 

International-Carnegie Mellon University, Pittsburgh, 

Technical Report, 2010. 

[16] Krithikadatta J, Valarmathi S. Research Methodology 

in dentistry: Part II — The relevance of statistics in 

research. J Conserv Dent 2012;15:206-213. 

[17] M. S. Sharmila and E. Ramadevi. "Analysis of 

performance testing on web application." International 

Journal of Advanced Research in Computer and 

Communication Engineering, 2014. 

[18] S.Sampath and R. Bryce, Improving the effectiveness 

of Test Suite Reduction for User-Session-Based 

Testing of Web Applications, Elsevier Information and 

Software Technology Journal, 2012. 

[19] B. Pedersen and S. Manchester, Test Suite 

Prioritization by Cost based Combinatorial Interaction 

Coverage International Journal of Systems Assurance 

Engineering and Management, SPRINGER, 2011. 

[20] S. Sprenkle et al., "Applying Concept Analysis to User-

sessionbased Testing of Web Applications", IEEE 

Transactions on Software Engineering, Vol. 33, No. 10, 

2007, pp. 643 – 658 

[21] C. Michael, ―Generating software test data by 

evolution, Software Engineering‖, IEEE Transaction, 

Volume: 27, 2001. 

[22] A.Memon, ―A Uniform Representation of Hybrid 

Criteria for Regression Testing‖, Transactions on 

Software Engineering (TSE), 2013. 

[23] R. W. Miller, ―Acceptance testing‖, 2001, Data 

retrieved from 

(http://www.dsc.ufcg.edu.br/~jacques/cursos/map/recur

sos/Testin g05.pdf) 



International Research Journal of Innovations in Engineering and Technology (IRJIET) 

ISSN (online): 2581-3048 

Volume 5, Issue 8, pp 94-101, August-2021 

https://doi.org/10.47001/IRJIET/2021.508016  

© 2021-2017 IRJIET All Rights Reserved                    www.irjiet.com                                           101                                                                    
 

[24] Infosys, ―Metric model‖, white paper, 2012. Data 

retrieved from (http://www.infosys.com/engineering-

services/whitepapers/Documents/comprehensive-

metrics-model.pdf) 

[25] B. Boehm, ―Some Future Trends and Implications for 

Systems and Software Engineering Processes‖, 2005, 

pp.1-11.  

[26] R. Bryce, ―Test Suite Prioritisation and Reduction by 

Combinational based Criteria‖, IEEE Computer 

Society‖, 2014, pp.21-22. 

[27] M. I. Babar, ―Software Quality Enhancement for value 

based systems through Stakeholders Quantification‖, 

2005, pp.359-360. Data retrieved from 

(http://www.jatit.org/volumes/Vol55No3/10Vol55No3.

pdf) 

[28] R. Ramler, S. Biffl, and P. Grünbacher, "Value-based 

management of software testing," in Value-Based 

Software Engineering. Springer Science Business 

Media, 2006, pp. 225– 244. 

[29] D. Graham, "Requirements and testing: Seven missing-

link myths," Software, IEEE, vol. 19, 2002, pp. 15-17. 
 

 

 

 

 

******* 

Citation of this Article: 

Shivankur Thapliyal, Renu Bahuguna, ―A Newly Proposed Ambidextrous Software Testing Model Based on Conventional 

Black Box Testing Strategy Using the Applications of Gaussian Distribution‖ Published in International Research Journal of 

Innovations in Engineering and Technology - IRJIET, Volume 5, Issue 8, pp 94-101, August 2021. Article DOI 

https://doi.org/10.47001/IRJIET/2021.508016  

 

https://doi.org/10.47001/IRJIET/2021.508016

