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I. INTRODUCTION 

Investigation of exact solitary wave solutions of the 

nonlinear evolution equations (NLEEs) has a vital role in the 

current study of nonlinear complex physical phenomena. In 

past few decades, a number of very powerful and direct 

methods have been proposed and developed to find the 

explicit solutions of NLEEs, such as the tanh-method [1], the 

homotopy perturbation method [2], the homogeneous balance 

method [3], the sine–cosine method [4], the improved F-

expansion method [5], exp-function method [6], (𝐺 ′/𝐺)-

expansion method [7], the simplest equation method [8], Lie 

symmetry method [9–14], Hirota Bilinear method [15], the 

generalized hyperbolic-function [16,17], the separation of 

variables method [18.19], First Integral Method [20,21] and so 

on. 

The Klein–Gordon equation plays an important role in 

mathematical physics. The equation has attracted much 

attention in studying solitons [22] in condensed matter 

physics, in investigating the interaction of solitons in a 

collision less plasma, and the recurrence of initial states. The 

generalized nonlinear Klein–Gordon equation is given by 

𝑢𝑡𝑡 − 𝑝2𝑢𝑥𝑥 + 𝑎𝑢 − 𝑏𝑢𝛾 = 0,  (with nonlinear term of order 

𝛾 ∈ ℜ, γ ≠ ±1). 

When 𝛾 takes the values 2 and 3, generalized nonlinear 

Klein–Gordon equation becomes the nonlinear Klein–Gordon 

equation with quadratic and cubic nonlinear term, 

respectively. Various methods have been used for solving 

generalized nonlinear Klein–Gordon equation with 𝛾 = 2 , 3.  

In [23], Adomian’s Decomposition scheme is used for solving 

nonlinear Klein–Gordon equation with 𝛾 = 3. Liu et al. [24], 

used Jacobi elliptic function expansion method to construct 

travelling wave solutions for nonlinear Klein–Gordon 

equation with 𝛾 = 2 , 3. Also, in [25], the author used an 

auxiliary ordinary differential equation to generate new exact 

travelling wave solutions for nonlinear Klein–Gordon 

equation with 𝛾 = 2 , 3. Moreover Zhang [26], used the 

extended Jacobi elliptic function expansion method to solve 

nonlinear Klein–Gordon equation with 𝛾 = 2 and some new 

exact solutions are obtained. In this paper, we aim to find 

exact solitary wave solutions for the generalized Klein–

Gordon equation. 

II. THE SINE FUNCTION METHOD 

Consider the nonlinear partial differential equation of the 

form 

𝐹 𝑢, 𝑢𝑡 , 𝑢𝑥 , 𝑢𝑥𝑥 , 𝑢𝑥𝑥𝑡 , …  = 0                        (1) 

Where 𝑢(𝑥, 𝑡) is the solution of nonlinear partial 

differential equation (1). We use the transformations, 

𝑢 𝑥, 𝑡 = 𝑓 𝜉 ,     𝜉 = 𝑥 − 𝑐𝑡                         (2) 

This enables us to use the following changes: 

  
𝜕

𝜕𝑡
 ∙ = −𝑐

𝑑

𝑑 𝜉
 ∙ ,   

𝜕

𝜕𝑥
 ∙ =

𝑑

𝑑 𝜉
 ∙ ,   

𝜕2

𝜕𝑥 2
 ∙ =

𝑑2

𝑑 𝜉2
 ∙ , …   (3) 

Eq. (3) changes Eq. (1) in the form 

𝐺 𝑓, 𝑓′ , 𝑓′′ , 𝑓′′′ , …  = 0                                    (4) 

The solution of Eq. (4) can be expressed in the form: 

𝑓  𝜉 = 𝜆 𝑠𝑖𝑛𝛼 𝜇 𝜉 ,              𝜉 ≤
𝜋

𝜇
                (5) 

Where 𝜆, 𝛼 and 𝜇 are unknown parameters which are to 

be determined. Thus we have: 

𝑓′ =
𝑑𝑓( 𝜉)

𝑑𝜉
= 𝜆 𝛼 𝜇 𝑠𝑖𝑛𝛼−1 𝜇 𝜉 cos⁡(𝜇 𝜉)        (6) 

𝑓′′ =
𝑑2𝑓( 𝜉)

𝑑𝜉 2 =

−𝜆 𝜇2𝛼 𝑠𝑖𝑛𝛼 𝜇𝜉 + 𝜆 𝜇2𝛼 𝛼 − 1 𝑠𝑖𝑛𝛼−2 𝜇𝜉 − 𝜆 𝜇2𝛼(𝛼 −

1)𝑠𝑖𝑛𝛼(𝜇𝜉)                                                         (7)     

         : 
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         : 

Substituting Eq. (5) in Eq. (4) gives a trigonometric 

equation of  𝑠𝑖𝑛𝛼 𝜇 𝜉  terms. To determine the parameters 

first balancing the exponents of each pair of sine to find 𝛼. 

Then collecting all terms with the same power in  𝑠𝑖𝑛𝛼 𝜇 𝜉  

and put to zero their coefficients to get a system of algebraic 

equations among the unknowns 𝜆, 𝛼 and 𝜇. Now the problem 

is reduced to a system of algebraic equations that can be 

solved to obtain the unknown parameters 𝜆, 𝛼 and 𝜇. Hence, 

the solution considered in Eq. (5) is obtained. The above 

analysis yields the following theorem: 

Theorem: The exact analytical solution of the nonlinear 

partial differential equations Eq. (1) can be determined in the 

form Eq. (5) where all constants found from the algebraic 

equations after its solutions. 

III. APPLICATION 

In order to illustrate the effectiveness of the proposed 

method we will consider the generalized nonlinear Klein–

Gordon equation in the following form: 

𝑢𝑡𝑡 − 𝑝2𝑢𝑥𝑥 + 𝑎𝑢 − 𝑏𝑢𝛾 = 0,  (with nonlinear term of order 

𝛾 ∈ ℜ, γ ≠ ±1).                                       (8) 

Using the transformation, 𝑢 𝑥, 𝑡 = 𝑓 𝜉 ,     𝜉 = 𝑥 − 𝑐𝑡 , 

Eq. (8) reduces to: 

 𝑐2 − 𝑝2 𝑓′′ + 𝑎 𝑓 − 𝑏𝑓𝛾 =                     (9) 

Substituting Eq. (5) and (7) into (9) gives: 

−  𝑐2 − 𝑝2 𝜆𝛼𝜇2  𝑠𝑖𝑛𝛼 𝜇 𝜉 

+  𝑐2 − 𝑝2 𝜆𝜇2𝛼 𝛼 − 1  𝑠𝑖𝑛𝛼−2 𝜇 𝜉 

−  𝑐2 − 𝑝2 𝜆𝜇2𝛼 𝛼 − 1  𝑠𝑖𝑛𝛼 𝜇 𝜉  

                +𝑎𝜆 𝑠𝑖𝑛𝛼  𝜇 𝜉 − 𝑏𝜆𝛾  𝑠𝑖𝑛𝛾𝛼  𝜇 𝜉 = 0       (10) 

Eq. (10) is satisfied only if the following system of 

algebraic equations holds: 

𝛾𝛼 = 𝛼 − 2, 

−  𝑐2 − 𝑝2 𝜆𝛼𝜇2 −  𝑐2 − 𝑝2 𝜆𝜇2𝛼 𝛼 − 1 + 𝑎𝜆 = 0, 

−𝑏𝜆𝛾 +  𝑐2 − 𝑝2 𝜆𝜇2𝛼 𝛼 − 1 = 0.                         (11)  

Solving the system of equations (11), we obtain: 

 𝛼 =
2

1−𝛾
,   𝜇 = ± 

𝑎(1−𝛾)

2(𝑐2−𝑝2)
 ,   𝑎𝑛𝑑  𝜆 =  

𝑎(𝛼−1)

𝑏
 

1

𝛾−1
    (12) 

 Substituting Eq. (13) into Eq. (5) we obtain the exact 

soliton solution of the generalized nonlinear Klein–Gordon 

equation, 

𝑢 𝑥, 𝑡 =  
𝑎(𝛼−1)

𝑏
 

1

𝛾−1
 𝑠𝑖𝑛

2

1−𝛾  ± 
𝑎(1−𝛾)

2(𝑐2−𝑝2)
 (𝑥 − 𝑐𝑡)    (13) 

 This gives the desired exact soliton solution of the 

generalized nonlinear Klein–Gordon equation. 

IV. CONCLUSION 

In this paper, the ansatz method, sine-function method 

has been successfully applied to find the solution for 

generalized nonlinear Klein–Gordon equation. The sine-

function method is used to find new exact solution. Thus, it is 

possible that the proposed method can be extended to solve 

the problems of nonlinear partial differential equations which 

arising in the theory of solitons and other areas. 
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