
International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 6, Issue 12, pp 38-42, December-2022

https://doi.org/10.47001/IRJIET/2022.612005

© 2022-2017 IRJIET All Rights Reserved www.irjiet.com 38

Image Processing Algorithms Implemented in FPGAs

Rustem Popa

Department of Electronics and Telecommunications “Dunarea de Jos” University of Galati, Romania

Abstract - In this paper, we implemented two simple image

processing algorithms in the MATLAB environment and

then in the FPGA, and then we compared the results in

terms of accuracy and execution time. The first algorithm

deals with the pseudo-coloring of a monochrome image of

256 x 256 pixels, by assigning to each pixel in the original

image three other values, corresponding to the RGB

matrices in the colored image. The assignment of these

values was based on a conversion table that generates 16

different colors in the HOT color scale. The second

algorithm generates the negative image of the

monochrome image by calculating the new values of the

pixels making the difference between 255 and their initial

value. For each algorithm discussed here, the images

obtained in MATLAB R2014a are compared with those

obtained in the Xilinx ISE 14.7 environment in terms of

accuracy and execution speed.

Keywords: Image processing, Pseudo-coloring, HOT scale,

Circuit simulation, Field Programmable Gate Arrays (FPGAs),

MATLAB environment, Xilinx ISE.

I. INTRODUCTION

As we know, algorithms are usually implemented in

software and the programs built for this purpose run on

standard hardware architecture. However, there are specific

applications, in which the execution speed of the algorithm is

essential, and image processing requires the existence of some

hardware resources to ensure a maximum processing speed.

FPGA circuits offer two major advantages for achieving

this goal: on the one hand, they have a very high degree of

integration that provides the necessary hardware resources,

and on the other hand, they are programmable by the user, and

this allows the construction of highly efficient parallel

hardware structures in signal processing, including images.

In the literature there are numerous papers dealing with

image processing using FPGAs. A “versatile, modular and

scalable platform for test and implementation of low-level

image processing algorithms under real-time constraints” was

presented in [1]. This implementation consists of a set of

FPGAs organized in a systolic architecture. Although the

circuits use a modest frequency of 66 MHz, the parallelism of

the structure offers an impressive performance of about 6

GOPs with the possibility of extension to 9 GOPs. In [2], the

authors implement several algorithms for processing binary

images and compare their performance from the point of view

of memory requirements and execution time. The paper [3]

discussed the design of an image processing environment

using the circuit structure of the XC6216, a well-known FPGA

that allowed cell-level reconfiguration. The authors of the

paper [4] introduce the concept of hardware skeletons, which

are parameterized descriptions of some task-specific

architecture, to which the user can introduce parameters such

as values, functions, or even other skeletons. In [5] image

processing is done using a hardware/software architecture

based on hardware featuring a FPGA co-processor and a host

computer which runs a LABVIEW application.

This paper presents two simple image processing

algorithms, which were implemented in software, using the

MATLAB environment, and then in FPGA. For each case, a

comparison is made of the results in terms of accuracy and

speed of the algorithm, using the same processed image.

For the implementation of the algorithms in the software,

we used the MATLAB R2014a environment, and for the

implementation in the FPGA we used the Xilinx ISE 14.7

environment.

This paper is organized as follows. Section II describes

the implementation of the proposed algorithms in the

MATLAB environment. The implementation of the algorithms

in FPGA is done in Section III, using the ISE 14.7

environment from Xilinx and the Verilog Hardware

Description Language. Section IV describes the main

experimental results by comparing the images in terms of

accuracy and execution speed. Finally, Section V concludes

the paper.

II. IMPLEMENTATION IN MATLAB

The image processed by the two algorithms is the well-

known "Lena", which was downloaded from Internet, being

used in the paper [6]. The image resolution is 256 x 256

pixels, and each pixel is represented by 8 bits, having values

between 0 and 255. We used the original monochrome image,

without using any other transformations. This image is

represented in Figure 1.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 6, Issue 12, pp 38-42, December-2022

https://doi.org/10.47001/IRJIET/2022.612005

© 2022-2017 IRJIET All Rights Reserved www.irjiet.com 39

Figure 1: Monochrome image of “Lena” [6]

2.1 Implementation of the pseudo-coloring algorithm

The 256 possible pixel values in the monochrome image

are divided into 16 regions, each corresponding to a different

color. The 16 pixel values in each region will get the same

color. Each pixel in the original image will have a

correspondence in 3 other values, each of 8 bits, for each color

pixel in the matrices R, G and B, and then we concatenated the

results, obtaining the color image [7].

In this paper we used the HOT color scale, in which the

colors change smoothly from black, through shades of red,

orange, and yellow, to white. The image colored by this

method is represented in Figure 2. It is by no means identical

to the original "Lena" color image, but our goal is to show that

there is no difference between the image implemented in

MATLAB and the one implemented in FPGA.

2.2 Implementation of the negative image

The pixel values in the monochrome image are between 0

and 255. The black color pixel has the value 0, and the white

color has the maximum value of 255.

Figure 2: Negative image in MATLAB and in FPGA

Figure 3: Colored image in MATLAB and in FPGA

To obtain the negative image, we will subtract the pixel

values from the maximum value of 255. The negative image

thus obtained is represented in Figure 3.

The two algorithms were implemented in MATLAB

R2014a environment on a computer with an Intel i3-6006U

processor at 2 GHz. The pseudo-coloring algorithm uses "for"

cycles to assign different values to groups of pixels located in

the same color region, and the negative image generation

algorithm uses a simple operation of subtracting two matrices.

Therefore, we expect this algorithm to be faster than the first

one. In fact, the running time for the pseudo-coloring

algorithm is about 9000 µs, and for the negative image

generation algorithm about 50 µs.

III. IMPLEMENTATION IN FPGA

Figure 4 represents the structure of the project in FPGA,

implemented in circuits from the Spartan 3E family and which

was also used in the works [8] and [9].

Figure 4: Schematic diagram in Xilinx ISE 14.7

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 6, Issue 12, pp 38-42, December-2022

https://doi.org/10.47001/IRJIET/2022.612005

© 2022-2017 IRJIET All Rights Reserved www.irjiet.com 40

The processed image is stored in the "memory" block,

being read from the file using the instruction $readmemh. The

format of the file containing the image is the HEX format,

obtained by converting the JPG format in which the original

image was provided ([10]).

The image has 256 x 256 pixels, that is, it contains a total

number of 65536 pixels, each pixel being represented by an 8-

bit number. To store this image, we chose a memory with 17

address lines (numbered from 16 to 0) and 8 bits of output

data (numbered from 7 to 0). The "counter" block is a counter

that increments the address lines of the memory. The clock

signal is the one that changes the addresses and each pixel in

the image is read and processed during a clock period.

The third block in the diagram is the one that contains the

desired algorithm. The "color" block implements the pseudo-

coloring algorithm. This block has an 8-bit input for each pixel

in the original image and three 8-bit outputs, corresponding to

the pixels in the 3 color matrices R, G and B.

3.1 Implementation of the pseudo-coloring algorithm

In the following we present a fragment of the Verilog

code for the "color" block. The values assigned to the output

variables are taken from the correspondence table for the HOT

color scale.

The verification of the proposed project is done by

simulation. For this purpose, a Verilog file is generated for

testing, and the simulation generates the 3 files containing the

color matrices. Function $fopen opens 3 files in HEX format,

and the data obtained at the 3 outputs are saved with the

function $fwrite. The data were saved in binary format, the

values of the image pixels being in text format, that is, for

each bit of 1 or 0, the ASCII code of the respective character

is stored. A simple program can convert this information into 8

bits samples. The image obtained in this way is identical to the

image obtained in MATLAB, which was represented in Figure

2 (the PSNR between the two images is infinite).

3.2 Implementation of the negative image

To implement this algorithm, we used the same scheme

as in Figure 4, but the "color" block is now replaced by

another similar block, only this new block also has an 8-bit

input and a single 8-bit output, which provides the resulting

pixels of the negative image.

The complete Verilog code for this module is shown

below. Only one operation is performed, namely the

difference between two matrices. Thus, a maximum

parallelism is ensured for the maximum efficiency of the

algorithm from the point of view of execution speed.

The test file used in the simulation is similar to the one

used for testing the pseudo-coloring algorithm. The same

functions $fopen and $fwrite are used, except that now a

single file is generated. And this time, the two images

generated in MATLAB and in FPGA, which are represented

in Figure 3, are identical.

IV. RESULTS AND DISCUSSIONS

The waveforms shown in Figure 5 represent the

simulation results for the first pixels in the image in the case

of the pseudo-coloring algorithm. We notice that in the first

clock period, the value of the first pixel in the monochrome

image is 00101010 in base 2, that is 42 in decimal. The values

of the three RGB outputs are: output_r = 01100110, that is 102

in decimal, output_g = 00011111 , that is 31 in decimal, and

output_b = 01001001, that is 73 in decimal. These values are

exactly the ones in the conversion table, which were entered in

the Verilog code that describes the "color" block discussed

earlier (as we can see in Verilog code, the number 42 is

between 32 and 49).

HDL Synthesis Report suggests the necessary hardware

resources for the implementation of the pseudo-coloring

algorithm. A 16-bit counter, three 8-bit registers, 28

comparators and a 512 kb memory, are required.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 6, Issue 12, pp 38-42, December-2022

https://doi.org/10.47001/IRJIET/2022.612005

© 2022-2017 IRJIET All Rights Reserved www.irjiet.com 41

Figure 5: R, G, and B outputs for the first eight pixels of the colored image

Figure 6: Output for the first eight pixels of the negative image

We can choose, for example, the FPGA circuit

XC3S1600E, which contains 1600k equivalent logic gates and

a RAM memory of 648 kb.

We saw that the execution time of the pseudo-coloring

algorithm in MATLAB is about 9000 µs. The frequency of the

clock signal for the circuit XC3S1600E is 300 MHz. If each

image pixel is processed in one clock period, then the total

image coloring time is 218 µs (i.e. 65536 pixels x 3,33

ns/pixel). So, the execution of this algorithm is about 40 times

faster in hardware than in software.

Figure 6 represents the waveforms for the first eight

pixels of the negative image. As we can see, the binary value

of the first pixel in the image is 00101010 in base 2, that is 42

in decimal. The value of the processed pixel is the base 2's

complement, i.e. 11010101, which is 213, exactly the value

obtained by subtracting the number 42 from 255. Likewise, for

the value of the next pixel 00110001, the negative value of

this pixel is 11001110 and so on.

The execution time in MATLAB is about 50 µs, and the

execution time in the circuit XC3S1600E is the same as the

one from the previous algorithm (each bit is processed in a

clock period), that is 218 µs.

V. CONCLUSION

In this paper we implemented two simple algorithms in

MATLAB and then in FPGA. The resulting images for a given

algorithm are identical for the two implementations because

the pixel values are integers and there are no rounding errors

typical of floating point processing.

As is known, implementation in hardware is usually

faster than implementation in software and this is confirmed

by the first algorithm, which has a 40 times faster execution

speed in hardware. In the pseudo-coloring algorithm, each

pixel is processed for a clock period, both in software and in

hardware, so the algorithms are identical from a constructive

point of view.

The results are different in the case of the second

algorithm, due to the fact that its implementation in MATLAB

is vectorial, while in FPGA it remained the same as in the first

case, in which each pixel in the image changes in a period of

clock.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 6, Issue 12, pp 38-42, December-2022

https://doi.org/10.47001/IRJIET/2022.612005

© 2022-2017 IRJIET All Rights Reserved www.irjiet.com 42

A simple algorithm can be directly implemented in the

FPGA, using an HDL language, such as Verilog HDL, as we

did in this experiment. More complicated algorithms can be

transformed from MATLAB or SIMULINK code into HDL

code, using HDL coder from MATLAB. FPGA circuits

provide very good support for future implementations of more

complex algorithms in hardware.

REFERENCES

[1] G. Saldaña-González, and M. Arias-Estrada, “FPGA

Based Acceleration for Image Processing

Applications”, in the book: “Image Processing”,

INTECH, Croatia, pp. 477-492, 2009

[2] A. Nieto, V. M. Brea, and D. L. Vilariño, “An FPGA-

based Topographic Computer for Binary Image

Processing”, in the book: “Image Processing”,

INTECH, Croatia, pp. 493-516, 2009

[3] A. Bouridane, D. Crookes, P. Donachy, K. Alotaibi,

and K. Benkrid, “A high level FPGA-based abstract

machine for image processing”, Journal of Systems

Architecture, vol. 45, pp. 809-824, 1999

[4] K. Benkrid, D. Crookes, and A. Benkrid, “Towards a

general framework for FPGA based image processing

using hardware skeletons”, Parallel Computing, vol.

28, pp. 1141–1154, 2002

[5] J.A. Kalomiros and J. Lygouras, “Design and

evaluation of a hardware/software FPGA-based system

for fast image processing”, Microprocessors and

Microsystems, 2008, doi: 10.1016/j.micpro.

2007.09.001

[6] T. Chen, et al. “Combined Digital Signature and

Digital Watermark Scheme for Image Authentication”,

Info-tech and Info-net, 2001. Proceedings, vol.5, ICII

2001, Beijing, (2001)

https://www.researchgate.net/publication/3935609

[7] R. C. Gonzalez, R. E. Woods, and S. L. Eddins,

“Digital Image Processing using MATLAB”, 2
nd

 ed.,

Gatesmark Publishing, ch.7, pp. 318-376, 2009

[8] R. Popa, “ECG Signal Filtering in FPGA”, The 6-th

International Symposium on Electrical and Electronics

Engineering, ISEEE 2019, Galaţi, Romania, 18-20

October 2019, (in IEEE Explore)

https://ieeexplore.ieee.org/document/9136119/

[9] M. S. Pavel, R. Popa, “An Algorithm for

Pseudocoloring Images in FPGA”, The 7-th

International Symposium on Electrical and Electronics

Engineering, ISEEE 2021, Galaţi, Romania, 28-30

October 2021, (in IEEE Explore)

https://ieeexplore.ieee.org/document/9628810/

[10] Van Loi Le, FPGA4Student. Site with Verilog/ VHDL

Projects, 2016, URL:

https://www.fpga4student.com/2016/11/image-

processing-on-fpga-verilog.html

AUTHOR’S BIOGRAPHY

Rustem Popa received the B.S. degree

in electronics engineering from

Bucharest Politehnica University in

1984, and Ph.D. degree at “Dunarea de

Jos” University in Galati, Romania, in

1999. His research interests include

digital electronics, medical electronics

and soft computing. He is the author

and co-author of 7 books and over 60

journal and conferences papers.

Citation of this Article:

Rustem Popa, “Image Processing Algorithms Implemented in FPGAs” Published in International Research Journal of

Innovations in Engineering and Technology - IRJIET, Volume 6, Issue 12, pp 38-42, December 2022. Article DOI

https://doi.org/10.47001/IRJIET/2022.612005

https://doi.org/10.47001/IRJIET/2022.612005

