
International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 3, pp 29-35, March-2023

https://doi.org/10.47001/IRJIET/2023.703005

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 29

Estimating Software Size Using Metrics from

Analysis and Design Phases (ADM) of the Software

Development Life Cycle (SDLC)
1
AESHAA L. AL-SALEEM,

2
ASMA’A Y. HAMMO

1,2Department of Software Engineering, College of Computer Science and Mathematics, University of Mosul, Iraq

Abstract - Due to the lack of available information in the

early stages of project creation, early estimation of the

project size is a difficult task. The information appears

more detailed and clear as we progress in the stages of

building the software. The aim of the research is to design

and implement a model to estimate the size of the program

in the two phases of analysis and design separately, and in

the phases of analysis and design together using four

measures of the class diagram, which are "number of

classes", "number of features", "number of operations"

and "number of relationships".

Keywords: Software size, Source Line of Code (SLOC),

Software Development Life Cycle (SDLC), analysis, design,

Unified Modeling Language (UML), Class diagram, diagram.

I. INTRODUCTION

One of the basic aspects of software management

successful is the effort estimation [1-3]. Calculating software

effort is certainly a complex process and time consuming

because it depends on several factors including software size

[4]. Many methods have been proposed over the past years to

estimate the software size. Source line of code (SLOC)

represents the real size of a program excluding comments and

white space lines. Estimating the volume of software in the

advanced stages of the project life cycle is important for

project managers for several reasons: including knowing the

time needed to complete the system, because the difference in

the scheduled date of delivery of the system to the customer

will cause the customer to lose confidence in the company

producing the system. Also, it helps in determining the

appropriate budget for the project, as well as allocating

resources efficiently [5]. Therefore, estimating code size early

became an important research topic for many years [4]. There

are several methods for estimating software size. One of the

most used methods from the beginning to solve the problem of

estimation is expert judgment, which depends on the expert‟s

experience, but it is not subject to criteria [27]. As an

alternative method for SLOC, the scientists proposed a

function point that depends entirely on the number of basic

function as that the system performs and thus represents the

functional requirements of the user [37, 38]. Many

researchers proposed different UML models for estimating

software size (e.g. Sequence Diagram, Entity Relationship

Diagram, Use Case Diagram, Activity Diagram and Class

Diagram) [6-25]. Model-based estimation is divided into two

main types: parametric such as COCOMO and its extensions

[28], non-parametric model, where the estimation model is

applied using machine learning such as a neural network, and

thus we will get a more accurate model [29, 30]. In the agile

software development process, software scaling method is

called story point [31, 32]. The aim of the research is to design

and implement a tool to estimate the size of the program in the

analysis and design phases separately, and in the analysis and

design phases together using metrics from Class diagram. The

research structure is as follows. Section 2 discussed research

related work. Section 3 provides enough information about

class diagram in UML and software sizing. Section 4 presents

the research methodology. Section 5 gives conclusion and

future works.

II. RELATED WORK

Some researchers turned to study software estimation in

many as follows:

Harizi 2012 [19] built a new method for estimating the

size of the program using class diagram scales and giving

them their own weights. Although it is an innovative method,

the criteria used to allocate weights have not been

experimentally validated.

Lazic et al.2012 [20] they studied four methods for

estimating the size of the program, and as a result of this

study, they derived a model for estimating the size through the

multiple linear regression model. They proposed a method to

calculate (LOC) for the system and validated the method by

applying it to a number of samples taken from open source

systems and industry.

Nur Atiqah Sia Abdullah et al 2013 [41] used Unified

Modeling Language)UML(models such as Use Case diagram,

sequence diagrams component diagram, object diagram and

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 3, pp 29-35, March-2023

https://doi.org/10.47001/IRJIET/2023.703005

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 30

behavioral model elements to represent the workflow

requirements and functional requirement for estimation based

on a COSMIC function point .

Zhou et al 2014 [11] presented an investigation of the

accuracy of Source Line Of Code(SLOC) based estimation

models in early Software Development Life Cycle(SDLC)

using six measures of class diagram. They used 100 Java

systems and applied a number of techniques to them,

including tree based model, instance based model, nonlinear

model, and linear model. The results were that using an

estimation model that create using UML diagrams size metric

achieved the highest accuracy.

Ayyildiz and Koçyigit 2015 [23] Analyzed the

congruence between metrics such as the number of nouns

specified and verbs specified in the requirements document

and solution metrics such as the total number of classes in the

program and the number of methods. They used 14 software

projects. They also in 2018 [22] estimated the voltage and

compared it to the real effort using COSMIC function point.

They noticed that there is a robust correlation between effort

and size. and effort estimation model is more accurate than

CFP.

Kiewkanya and Surak 2016 [24] Used multiple linear

regression analysis, which is a statistical technique and class

diagram, a method was proposed to estimate the size of C++

software. Through the implementation of the proposed model,

an automated software tool was built to measure the size of the

program based on the structural complexity of the class

diagram.

Badri et al 2016 [25] conducted a comparative study

between two methods for predicting the size of the software.

They chose the use case metrics and the objective class point.

They used simple linear regression methods to build the

estimation models. The data were for four Java projects. The

result of this study was that the Use Case metrics are more

reliable estimating SLOC.

Daud, M. and Malik, A.A. 2021 [9] presented a special

method for estimating the size of the program by comparing

the category diagram at the design stage and the category

diagram at the analysis stage. They derived four famous

measures from the class plot, which are the number of classes,

the number of methods, the number of attributes, and the

number of relationships between classes. Moreover, compared

two previous models of volume estimation before and after

applying model on them.

III. CLASS DIAGRAM IN UML AND SOFTWARE

SIZING

The class diagram is one of the most popular and widely

used (UML) diagrams and gives a comprehensive view of the

overall software structure by showing the system's classes,

their features, operations (or methods), and the relationships

amongst objects. The classes in a class diagram represent both

the basic components interactions in the system, and the

classes for which code is to be written. In the diagram, the

class is represented in the form of a box divided horizontally

into three parts. The first part contains the name of this class,

written in bold, and takes a central location, and the first letter

of the name is capitalized. The second part contains the

features of class, and the end part contains the operations that

the class performs, and it is similar in Adjectives with the

second section, as the script is normal and aligned to the left,

and the first letter is made of lowercase letters. There are

several relationships between the classes, including

Association, Aggregation, and Composition [44]. Commonly

the systems analyst starts by doing the Analysis Class

Diagram (ACD) in the analysis stage to comprehension the

problem domain. In the next stage (design), the systems

analyst converts the ACD into a Design Class Diagram (DCD)

which include more accurate and specific information about

the system. As it is known that estimating the size of the

software using inputs from an early stage of the project life

cycle is considered better, but waiting until more accurate and

detailed information is obtained, we get a more accurate

estimate [45]. In order for the estimate to be useful for project

managers, its results must be closer to reality and more

accurate. There are some differences between ACD and DCD

firstly, when going from ACD to DCD, the level of abstraction

decreases. Secondly, DCD contains more detailed and

accurate information about the system than ACD.

IV. THE METHODOLOGY

The task of deriving the measures and determining their

values is easy to do. In this research, the additional

information from the design stage to the analysis stage and

apply a new type of Metrics it‟s called the metrics from the

design stage to the analysis stage (ADM). ADM extracts four

metrics from the class diagram, which are number of classes

(NOC), number of attributes (NOA), number of methods

(NOM) and number of relationships (NOR). Figures (1)

describe action steps.

First step: the class diagram of the analysis and design

stages for the projects should be obtaining

For each project Class diagram should be drawn using

enterprise architect (EA), one of the known tools, which

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 3, pp 29-35, March-2023

https://doi.org/10.47001/IRJIET/2023.703005

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 31

supports an overall modeling of UML and it is uses for

creating and designing software systems.

Second step: class diagram has been exported to (XML

document)

Each class diagram for the analysis and design stages

exported to (XML document) by the directive "export package

to XML" and we choose the version (UML 1.3). Figure (2)

gives an example of the (XML document).

Third step: parsing the XML document

An XML parser was used to extract required information

from an XML document; The XML parser will keeps all the

tag values of the XML documents in lists containing most of

class information. The JAVA Net Beans implementation

programming language and the Document Object Model

(DOM) are used to process the XML document. The (DOM) is

an interface for programming application that deals with XML

document and provides for the document's tag tree structural

representation. XML documents contain a hierarchy of

informational units called nodes. These nodes represent the

'tags'. The DOM describes those nodes and the relationships

between them. Actually, we need only some metrics as shown

below.

Fourth step: Calculate input metrics values from analysis

class diagram (ACD)

Calculate input metrics from parsing the XML document

of ACD. The needed ACD metrics are (AM1=NOC,

AM2=NOA, AM3=NOM, AM4=NOR).

Fifth step: Calculate input metrics values from design class

diagram (DCD)

In the same way, calculate input metrics from DCD. The

used DCD metrics are (DM1=NOC, DM2=NOA,

DM3=NOM, DM4=NOR).

Sixth step: Calculate (ADM) analysis and design metrics

Calculate (ADM) analysis and design metrics for each

input metrics as in equation (1) [9].

𝑨𝑫𝑴𝒙 =
𝑫𝑴𝒙𝒊

𝑨𝑴𝒙𝒊
 (1)

Seventh step: adjusting ADM value

The adjusting is done by multiplying ADM by the DCD

metrics as shown in equation)2(.

𝑨𝑫𝑪𝑫𝒙 = 𝑨𝑫𝑴𝒙 ∗ 𝑫𝑪𝑫𝒙𝒊 (2)

Eighth step: Existing size estimation model

Finding the size of the program using the (LOC) method,

based on the two model first that was found by (Lazic et al

2012), in which 8 programs written in C++ language taken

from industry and 17 graduation projects for students written

in Java were used as in equation (3). The second model is

obtained from (bianco & Lavazza 2006) in which 12 student

programs written in java and 5 open source projects were used

as in equation (4).

LOCᴸ=241.41+10.2*NOA+9.547*NOM-24.84*NOC (3)

LOCᴮ=5.7*NOM+3.3*NOA (4)

Ninth step: extracting the size of the program using the

(LOC) method

Programs similar to the selected schemes were searched

on GitHub. The programs were matched with the charts. Then

calculate (LOC) for it. LOC here is the source code with

eliminating comments and blank lines.

Tenth step: Software size estimation models are made to

compare the actual software projects’ size with before and

after applying model (ADM)

Finding the real (LOC) before applying the (ADM)

method in the design stage. And to find the expected (LOC)

resulting from the application of the (ADM) method, and to

find the difference or ratio between the two outputs.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 3, pp 29-35, March-2023

https://doi.org/10.47001/IRJIET/2023.703005

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 32

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 3, pp 29-35, March-2023

https://doi.org/10.47001/IRJIET/2023.703005

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 33

V. TEST AND RESULT FOR METHOD

For the purpose of executing the algorithm, test cases

must be used and analyzed. Three test cases were used on

three different class diagrams. Then, clarified the results of

method. The first example represents a graduate research for a

master's student examining the possibility of discovering

copying codes using the Dart language, the second represents

the ATM system, and the third represents the student

information system table (1).

Table 1: Result before and after applying size estimation method

The

model

used

Project

name

Real

(LOC)

(LOC) before

applying

method

(LOC) after

applying

method

Model
(1)

"𝐋𝐎𝐂ᴸ"

P1 1500 566 1482

P2 434 451 427

P3 1334 903 1220

Model
(2)

𝐋𝐎𝐂ᴮ

P1 1500 237 622

P2 434 234 313

P3 1334 437 633

The method was applied to our data set, and the size of

the programs was estimated based on two models, M1 and

M2, and the results showed that M1 gave better results and

closer to reality than M2. This is because M1 calculates more

metrics than M2.

VI. CONCLUSION AND FUTURE WORK

This research examines the measures taken from the

Class diagram, which can be used to estimate the size of

software at an early stage of the software development life

cycle. A new method was used in estimating the size based on

the analysis and design stages, both separately and together.

The results were also tested on a data set using two estimation

models. The results were in favor of one model over the other.

In the future we plan to apply this method to a wider

number of projects, preferably from industry.

REFERENCES

[1] Badri, M., Badri, L., Flageol, W., &Toure, F. (2017).

Source code size prediction using use case metrics: an

empirical comparison with use case points. Innovations

in Systems and Software Engineering, 13(2), 143-159.

[2] Nassif AB, Ho D, Capretz LF (2013) Towards an early

software estimation using log-linear regression and a

multilayer perceptron model. J Syst Softw 86(1):144–

160.

[3] Ochodek M, Nawrocki J, Kwarciak K (2011)

Simplifying effort estimation based on use case points.

Inf Softw Techno 53: 200–213.

[4] Lagerstroemia R, von Wurttemberg LM, Holm H,

Luczak O (2012) Identifying factors affecting software

development cost and productivity. Softw Qual J 20(2):

395–417.

[5] Zhou Y, Yang Y, Xu B, Leung H, Zhou X (2014)

Source code size estimation approaches for object

oriented systems from UML class diagrams: a

comparative study. Inf Softw Technol 56: 220–237.

[6] Silhavy, R., Silhavy, P. and Prokopova, Z. (2021)

Using actors and use cases for software size estimation.

Electron., 10, 1–20.

[7] Densumite, S. and Muenchaisri, P. (2017) Software

size estimation using activity point. IOP Conf. Ser.:

Mater. Sci. Eng., 185, 1-8.

[8] Ungan, E. (2013) A functional software measurement

approach bridging the gap between problem and

solution domains. Ph.D. dissertation. In The

Department of Information Systems. Middle East

Technical University, Ankara, Turkey.

[9] Daud, M. and Malik, A.A. (2021) Improving the

accuracy of early software size estimation using

analysis-to-design adjustment factors (ADAFs). IEEE

Access, 9, 81986–81999.

[10] Kim, S., Lively, W. and Simmons, D. (2006) An effort

estimation by UML points in the early stage of

software development. In Proc. SERP 06, Las Vegas,

Nevada, June 26–29, pp. 415–421. CSREA Press, Las

Vegas, Nevada.

[11] Zhou, Y., Yang, Y., Xu, B., Leung, H. and Zhou, X.

(2014) Source code size estimation approaches for

object oriented systems from UML class diagrams: a

comparative study. Inf. Softw. Technol., 56, 220–237.

[12] Misic, V.B. and Te ˇ sic, D.N. (1998) Estimation of

effort and ˇ complexity: an object-oriented case study.

J. Syst. Softw., 41, 133–143.

[13] Antoniol, G., Lokan, C., Caldiera, G. and Fiutem, R.

(1999) A function point-like measure for object

oriented software. Empirical Softw. Eng., 4, 263–287.

[14] Antoniol, G., Fiutem, R. and Lokan, C. (2003) Object-

oriented function points: an empirical validation.

Empirical Softw. Eng., 8, 225–254.

[15] Chen, Y., Boehm, B.W., Madachy, R. and Valerdi, R.

(2004) An empirical study of eServices product UML

sizing metrics. In Proc. ISESE 04, Redondo Beach,

CA, August 19–20, pp. 199– 206. IEEE, Washington,

DC.

[16] Bianco, V.D. and Lavazza, L. (2005) an empirical

assessment of function point-like object oriented

metrics. In Proc. METRICS 05, Como, Italy,

September 19–22, pp. 1–10. IEEE, Washington, DC.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 3, pp 29-35, March-2023

https://doi.org/10.47001/IRJIET/2023.703005

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 34

[17] Tan, H.B.K. and Zhao, Y. (2006) Sizing data-intensive

systems from ER model. IEICE - Trans. Inf. Syst.,

E89-D, 1321–1326.

[18] Tan, H.B.K., Zhao, Y. and Zhang, H. (2009)

Conceptual data model-based software size estimation

for information systems. ACM Trans. Softw. Eng.

Methodol., 19, 1–37.

[19] Harizi, M. (2012) the role of class diagram in

estimating software size. Int. J. Comput. Appl., 44, 31–

33.

[20] Lazic, L., Petrovic, M. and Spalevic, P. (2012)

Comparative study on applicability of four software

size estimation models based on lines of code. In Proc.

ECC 12, Prague, Szeh Republic, September 24–26, pp.

71–80. WSEAS Press, Zografou, Athens, Greece.

[21] Alashhb, M.I. and Lazic, L. (2016) A critical review of

source code size estimation approaches for object-

oriented programming languages: a comparative study.

In INFOTEH-JAHORINA 16, Jahorina, Bosnia, March

16–18, pp. 535–540. IEEE, Washington, DC.

[22] Ayyildiz, T.E. and Koyiit, A. (2018) Size and effort

estimation based on problem domain measures for

object oriented software. Int. J. Softw. Eng. Knowl.

Eng., 28, 219–238.

[23] Ayyildiz, T.E. (2015) Size and effort estimation based

on correlations between problem and solution domain

measures for object oriented software. Ph.D.

dissertation. In The Department of Information

Systems. Middle East Technical University, Ankara,

Turkey.

[24] Kiewkanya, M. and Surak, S. (2016) Constructing C++

software size estimation model from class diagram. In

Proc. JCSSE 16, Khon Kaen, Thailand, July 13–15, pp.

1–6. IEEE, Washington, DC.

[25] Badri, M., Badri, L. and Flageol, W. (2016) Source and

test code size prediction-A comparison between use

case metrics and objective class points. In Proc.

ENASE 16, Rome, Italy, April 27– 28, pp. 172–180.

Springer, Berlin.

[26] Object Management Group. About the UML

specification version 2.5.1.

https://www.omg.org/spec/UML/About-UML/

(accessed October 11, 2021).

[27] R. T. Hughes, „„Expert judgment as an estimating

method,‟‟ Inf. Softw. Technol., vol. 38, no. 2 pp. 67–

75, Jan. 1996.

[28] R. Valerdi, B. W. Boehm, and D. J. Reifer,

„„COSYSMO: A constructive systems engineering cost

model coming of age,‟‟ in Proc. INCOSE Int. Symp.,

vol. 13, no. 1. Hoboken, NJ, USA: Wiley, 2003, pp.

70–82.

[29] Y. Singh, P. K. Bhatia, and O. Sangwan, „„ANN model

for predicting software function point metric,‟‟ ACM

SIGSOFT Softw. Eng. Notes, vol. 34, no. 1, pp. 1–4,

Jan. 2009.

[30] P. Pospieszny, B. Czarnacka-Chrobot, and A.

Kobylinski, “An effective approach for software

project effort and duration estimation with machine

learning algorithms,‟‟ J. Syst. Softw., vol. 137, pp.

184–196, Mar. 2018, doi: 10.1016/j.jss.2017.11.066

[31] M. Salmanoglu, T. Hacaloglu, and O. Demirors,

„„Effort estimation for agile software development:

Comparative case studies using COSMIC functional

size measurement and story points,‟‟ in Proc. ACM Int.

Conf. Proc., 2017, pp. 41–49, doi:

10.1145/3143434.3143450.

[32] Pasuksmit, J., Thongtanunam, P., & Karunasekera, S.

(2022). Story points changes in agile iterative

development. Empirical Software Engineering, 27(6),

1-55.

[33] Roger S Pressman and Bruce R Maxim, 2020 “software

engineering a practitioners approach”.

[34] Del Bianco, V., & Lavazza, L. (2006, October). Object-

oriented model size measurement: experiences and a

proposal for a process. In Workshop on Model Size

Metrics, part of the ACM/IEEE International

Conference on Model Driven Engineering Languages

and Systems (MoDELS 2006), Genova.

[35] Amanullah, K., & Bell, T. (2019, October). Evaluating

the use of remixing in scratch projects based on

repertoire, lines of code (LOC), and elementary

patterns. In 2019 IEEE Frontiers in Education

Conference (FIE) (pp. 1-8). IEEE.

[36] Aswini, S., & Yazhini, M. (2017). An assessment

framework of routing complexities using LOC metrics.

2017 Innovations in Power and Advanced Computing

Technologies (i-PACT), 1-6.Software Size Estimation

with Deep Learning Model, 2020.

[37] Morrow, P. (2018). Software sizing for cost/schedule

estimation (Doctoral dissertation, Ulster University).

[38] Agresti, A. (2010). Analysis of ordinal categorical data

(Vol. 656). John Wiley & Sons.

[39] Stern, S., & Gencel, C. (2010, November). Embedded

software memory size estimation using COSMIC: a

case study. In Int‟l Workshop on Software

Measurement (IWSM) (Vol. 39).

[40] Abdullah, Nur Atiqah Sia, Nur Ida Aniza Rusli, and

Mohd Faisal Ibrahim. "A case study in COSMIC

functional size measurement: angry bird mobile

application." In 2013 IEEE Conference on Open

Systems (ICOS), pp. 139-144. IEEE, 2013.

[41] Chander Diwaker, Astha Dhiman, “Estimating Size and

Effort Estimation Techniques for Software

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 3, pp 29-35, March-2023

https://doi.org/10.47001/IRJIET/2023.703005

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 35

Development,” International Journal of Software and

Web Sciences (IJSWS), pp. 2279–0071, May. 2013.

[42] Ahmed, A.T. and Taha, D.B., Webapp Effort

Estimation using Cosmic Method. International Journal

of Computer Applications, (2018): 975, p.8887.

[43] https://en.wikipedia.org/wiki/Class_diagram

[44] Ungan, E., Trudel, S. and Abran, A. (2018) Analysis of

the gap between initial estimated size and final (true)

size of implemented software. In IWSM /Mensura 18,

Beijing, China, September 19–20, pp. 123–137. CEUR

Workshop Proceedings, Aachen, Germany.

Citation of this Article:

AESHAA L. AL-SALEEM, ASMA‟A Y. HAMMO, “Estimating Software Size Using Metrics from Analysis and Design

Phases (ADM) of the Software Development Life Cycle (SDLC)” Published in International Research Journal of Innovations

in Engineering and Technology - IRJIET, Volume 7, Issue 3, pp 29-35, March 2023. Article DOI

https://doi.org/10.47001/IRJIET/2023.703005

https://doi.org/10.47001/IRJIET/2023.703005

