
International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 5, pp 304-311, May-2023

https://doi.org/10.47001/IRJIET/2023.705043

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 304

Enhancing Code Quality and Feature Functionality

through Refactoring of the Property Listing Feature in

the Hotel Property Management System
1
*Patricia Evericho Mountaines,

2
Zulfa Fatah Akbar Ahmad

1,2
Department of Computer Engineering, Diponegoro University, Jl. Prof. Soedarto, S.H., Semarang, Central Java, 50275,

Indonesia

*Corresponding Author‟s E-mail: evericho@ce.undip.ac.id

Abstract - With the rapid advancement of technology, it is

inevitable that nearly every aspect of our lives involves

technology, particularly when accessing information.

Through the utilization of sophisticated technology, we can

conveniently and practically access various types of

information or data using mobile devices. This has led to

the development of web applications that encompass

diverse data within organizations. The purpose of creating

web app is to streamline team management processes,

enabling faster and more efficient work. However, quite

often we find features in the web apps that can still be

enhanced in terms of program code and functionality.

Refactoring offers a method to enhance both of the code

quality and the feature functionality. It aims to improve

the internal quality of a feature, making the system easier

to maintain and free from errors or bugs. Using the Test-

Driven Development approach in this research, a feature

has been successfully refactored, resulting in a more user-

friendly experience and facilitating easier maintenance for

developers.

Keywords: Refactoring, Code Quality, Feature Functionality,

Test-Driven Development, Property Listing Feature.

I. INTRODUCTION

Digitalization is currently experiencing rapid growth.

Furthermore, developers continue to innovate with

information technology-based solutions to ensure users can

reap the benefits of technology in their daily lives. Companies

are also embracing the development of their own information

technology products to streamline their operations. For

instance, hotel management service companies have

introduced web applications designed to simplify employee

tasks, including guest data management, employee data

management, transaction data processing, and property details

viewing. However, despite these features, there is still room

for improvement in terms of their quality.

One approach to enhance these features is through code

refactoring. Refactoring involves modifying the structure of

software without altering its behavior [1]. According to Martin

Fowler‟s book [2], refactoring is the process of transforming a

software system without changing its external behavior. The

primary objective of refactoring is to enhance the internal

structure quality of the software. Refactoring serves as a

means to “clean up” the program code and minimize the

occurrence of software bugs in the implementation. In

essence, when we engage in refactoring, we are effectively

enhancing the design quality of our software [3].

In the context of hotel property management system, the

property listing feature plays a crucial role in attracting

potential guest, facilitating reservations, and providing

accurate information about available amenities and pricing.

However, as software system evolve over time, the property

listing feature can become burdened, with legacy code,

inconsistencies, and limitations that hamper performance and

impede the addition of new functionalities. Therefore, a

systematic and well-planned refactoring process becomes

essential to ensure the continued success of the system.

This study focuses on refactoring the property listing

feature within the hotel property management system. Several

reasons justify the need for refactoring this feature, such as

messy code, excessive code repetition, inefficient data filtering

in property listings, lengthy data loading times impeding team

productivity, and inadequate usability for the development

team.

II. METHODOLOGY

One of the most widely used techniques for code refactoring

is Test-Driven Development (TDD), also known as Red-

Green-Refactor approach, which is commonly employed in

Agile test-based development. TDD is a software development

approach that emphasizes writing automated test before

writing the actual code. This approach was selected due to its

significant advantages in enhancing both code quality and

mailto:evericho@ce.undip.ac.id

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 5, pp 304-311, May-2023

https://doi.org/10.47001/IRJIET/2023.705043

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 305

feature functionality while preserving the same functionality

before and after the refactoring process. When applying this

method, developers break down the refactoring process into

five distinct steps [4]:

1) Stop and consider what needs to be developed (Red),

2) Run through all lines of code and see what fails,

3) Perform a little development or write code to pass basic

testing (Green),

4) Re-run the code and ensure that all tests pass,

5) Implement refactoring by optimizing and cleaning the

code without adding functionality (Refactor).

After completing these five steps, the developer can

return to the first step to achieve cleaner or neater code. The

TDD cycle can be seen in Figure 1.

Figure 1: TDD Cycle

III. RESULTS AND DISCUSSIONS

3.1 Web Application

The Hotel Property Management System has been

developed as a web-based solution to facilitate access,

viewing, and management of essential data for teams within a

company. For instance, in a hotel management company, a

web app can be built using the ReactJS library, incorporating

features such as a dashboard, guest list, payment list, property

list, employee list, and partner list. Among these features,

property data plays a crucial role as it represents the properties

that the company collaborates with. This data is integrated into

features and displayed on property listing pages within the

web app.

The property listing feature within the web app serves the

purpose of presenting the property data managed by the

company. It includes information, i.e. the property name,

property contract date, property type, location area, property

partner status, property Google Maps link, and property

WhatsApp group link. Additionally, the property list feature

provides filtering options to refine property data based on

specific criteria and allows users to search for properties by

their desired names.

3.2 Designing the Property Listing Feature

The design of a feature is essential prior to conducting a

refactoring process to ensure that the resulting improvements

truly enhance the feature‟s quality. This stage aims to clarify

the requirements for refactoring the feature and provides an

overview of how the feature will be transformed once the

refactoring is complete.

3.2.1 Feature Problems and Solutions

The refactoring of the property listing feature was

undertaken due to several issues encountered. These problems

are outlined as follows:

a) The front-end program code was complex, making it

difficult for developers to comprehend and maintain due

to excessive code repetition,

b) The table components lacked reusability for other

features,

c) The filter components were not user-friendly and lacked

reusability,

d) Excessive data retrieval from the back-end resulted in

lengthy loading times,

e) The display features could be further enhanced in terms

of aesthetics and user comfort.

Based on the issues, a plan or solution was devised for

refactoring the property list features, including:

a) Refactoring the program code to minimize code

repetition and facilitate easier maintenance by

developers,

b) Developing a new table component that can be utilized in

various features,

c) Creating a new user-friendly filter component that can be

applied to different features,

d) Optimizing data retrieval by retrieving only the

necessary data,

e) Redesigning the UI/UX of the property list feature to

improve its visual appeal and user experience.

The implementation of these solutions was carried out in

this research in order to successfully transformed the property

listing feature, enabling the refactoring process to effectively

address and overcome its initial challenges and limitations.

3.2.2 Functional Requirements

Functional requirements are essential for understanding

how a feature responds to specific inputs and behaves in

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 5, pp 304-311, May-2023

https://doi.org/10.47001/IRJIET/2023.705043

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 306

various situations. Through discussions involving Product

Owners, Front-End Developers, Back-End Developers, and

UI/UX Designers, a comprehensive list of functional

requirements for the property listing feature in the Hotel

Property Management System was compiled. This list

includes user categories, Software Requirements Specification

Code (SRSC-Id), description of requirements, and priorities,

as presented in Table 1.

Table 1: The functional requirements list

No. SRSC-Id Requirements Description Priority

1. SRSC-HPMS-0001 View the property list High

2. SRSC-HPMS-0002 Search for a specific property High

3. SRSC-HPMS-0003
Filter property data based on

available filters
High

4. SRSC-HPMS-0004
Sort property data by name or

date
Medium

5. SRSC-HPMS-0005
Sort property data in ascending

or descending order
Medium

6. SRSC-HPMS-0006
Download property data in

CSV format
Medium

3.2.3 Non-Functional Requirements

Non-functional requirements are limitations on services

or functions offered by features, including time constraints,

process development limitations, standardization, and others.

From discussions between Product Owners, Front-end

Developers, Back-end Developers, and UI/UX Designers, a

list of non-functional requirements for the property listing

feature in the Hotel Property Management System was

obtained. The list of non-functional requirements includes

Software Requirements Specification Code (SRSC Id),

parameters, and requirements description, as shown in Table

2.

Table 2: The non-functional requirements list

No. SRSC-Id Parameter
Requirements

Description

1. SRSC-HPMS-0007 Availability 24 hours a day

2. SRSC-HPMS-0008 Reliability Never fails

3. SRSC-HPMS-0009 Portability
Can be accessed using
any browser and must

have an account

4. SRSC-HPMS-0010 Communication English and Indonesian

3.2.4 Feature Design

The property listing feature underwent a redesign process

led by User Interface / User Experience (UI/UX) Designers.

These designers collaborated with the Product Development

team to evaluate the potential improvements in the feature‟s

quality and assess its feasibility for implementation by

developers. Being a critical component of the system, the

property listing feature required a fresh approach to enhance

its usability, visual appeal, and overall user experience. By

leveraging the expertise of UI/UX Designers and closely

collaborating with the Product Development team, the goal

was to address usability issues, enhance navigation, and

optimize the visual presentation. This was achieved through

the identification of pain points, gathering user feedback, and

ensuring that the design enhancements could be effectively

translated into actionable development tasks. The outcome of

this collaborative redesign effort drives the evolution of the

property listing features towards improved quality and user

satisfaction, resulting in a visually appealing and user-friendly

interface while maintaining the core functionality of the

property listing feature. The successful implementation of the

redesign demonstrated in the Figure 2.

(a)

(b)

Figure 2: The (a) Old Design and (b) New Design of Property Listing

Feature

In the latest design, as shown in Figure 2 (b), several

additional small features have been incorporated. These

include: (1) buttons for sorting data by name or date in

ascending or descending order, (2) a date joined filter to

facilitate data filtering based on contract date, and (3) an

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 5, pp 304-311, May-2023

https://doi.org/10.47001/IRJIET/2023.705043

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 307

indicator for property partner status, displayed as “completed”

or “pending”. It should be noted that during the development

stage, certain changes may occur based on considerations

arising from encountered issues during the refactoring process.

Consequently, the final appearance may differ from the

existing design, while maintaining the same functionality.

3.3 Code Refactoring of the Property Listing Feature

After completing the refactoring design process, the

functional requirements for the property list feature are

obtained, along with a new design for the property listing.

These two elements enable developers to proceed with

refactoring the feature.

3.3.1 The Data inside Property List

Within the property listing features, the property data will

be displayed according to the discussed specifications and the

new design of the feature. Please refer to Table 3 for the data.

Table 3: Data inside the Property List

No. Data Name Data Type

1. Onboard Date Date

2. Property Name String

3. Type String

4. Area String

5. Property Status String

6. Google Maps Link Link

7. WhatsApp Link Link

The property data within the property listing feature is

retrieved from the Back-end in the initial form of JSON

(JavaScript Object Notation). Subsequently, the JSON data is

processed on the Front-end to facilitate its display within the

property list table.

3.3.2 Creating Table Component

The table component is created to display a list of

properties along with their corresponding data. This table

component is also reusable, which means it can be utilized for

similar features that require data to be displayed in a table

format. By making it a reusable component, it helps reduce

code duplication and promotes code efficiency.

A table component named Dynamic Table is created

using the ReactJS functional component. The props parameter

is later used to receive property data that is passed into this

table component. This enables the table component to display

the property list data. The program code to retrieve the

property list data is implemented based on the provided props,

as shown in the following code snippet.

3.3.3 Creating Filter Component

The filter component is created to display various filters

that can be utilized to filter the property list data. The creation

of the filter component involves using components from

Material UI, including Accordion, Checkbox,

KeyboardDatePicker, and Textfield. Additionally, the filter

component is designed to be reusable, allowing other features

to use this component as well.

The filter component consists of four types of filters:

single select, multiple select, date, and range. In the property

listing feature, the filter types used include the date filter for

the „Date Joined‟ filter option, the single select filter for the

„Property Statuses‟, and the multiple select filter for Areas,

Property Types, and Unit Amenities.

const DynamicPropertyFilter =

allPropertyFiltersData.map((filter) =>{ return

(

<DynamicFilter

key={filter.label}

filterType={filter.type}

 label={filter.label}

 value={filter.value}

onChange={filter.onChange}

placeholder={filter.placeholder}

searchOption={filter.searchOption}

onChangeSearchOption=

{filter.onChangeSearchOption}

optionList={filter.optionList}

startDate={filter.startDate}

endDate={filter.endDate}

onChangeStartDate=

{filter.onChangeStartDate}

onChangeEndDate={filter.onChangeEndDate}

isClearable={filter.label === "property

statuses" ? false : true}

 />

);

});

<Dynamic Table

handleGetTrProps = {handleShowProperty}

filteredObjectKeys = {allObjectKeysPropertyList}

cell = {colCell}

data = {tableData}

count = {totalItemsFetched}

page = {currentPage}

onPageChange = {handlePageChange}

rowsPerPage = {rowsPerPage}

onRowsPerPageChange = {handleChangeRowsPerPage}

loading = {fetchPropertyListLoading}

noDataText = "No property found, please check

the filter"

/>

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 5, pp 304-311, May-2023

https://doi.org/10.47001/IRJIET/2023.705043

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 308

Figure 3: Design of the Property List Filter

The filter type forms become visible when the down

arrow symbol is clicked. The forms for the date, single select,

and multiple select filter types can be observed in Figure 4.

(a)

(b) (c)

Figure 4: Filter type of (a) date, (b) single select, and (c) multiple select

3.3.4 Creating Property Search Component

The property search component serves as a field where

users can search for specific property names by typing their

desired keywords. The implementation of this component is

relatively simple, using three components from Material UI:

Paper, Icon, and Input. UI of the property search input field

can be seen in Figure 5and the program code for this

component is shown below.

Figure 5: Input field of the property search

3.3.5 Creating Sort and Order Components

The sort and order components are implemented using

the Chip component from Material UI. These two components

serve the purpose of sorting and changing the order of data

within the property list. The sorting functionality can be based

on either the property name or the property contract date,

while the order can be arranged in ascending or descending

fashion. UI of the sort and order components can be seen in

Figure 6.

Figure 6: The sort and order components

3.3.6 Creating Indicator Component and CSV File

Download Button

The indicator component and the CSV file download

button are implemented using the Chip component from

Material UI, with only a difference in color. The indicator

component displays the status of property partners,

distinguishing between those that are complete and those that

are still pending or incomplete. On the other hand, the CSV

file download button enables users to download the property

list data as a CSV or Excel file, allowing them to save it

locally. The program code is presented below.

<div className="flex gap-8">

<Chipvariant="outlined"

className={classes.chip}

 label={`Sort By: ${sortBy ===

"property_name" ? "Name" : "Date"}`}

 clickableonClick={handleSortBy}/>

<Chip variant="outlined"

className={classes.chip}

 label={`Order: ${sortOrder === "ASC" ?

"Ascending ⬆" : "Descending ⬇" }`}

 clickable onClick={handleOrder}/>

</div>

<Paper className="flex p-4 items-center w-full

max-w-512 px-8 py-4" elevation={1} >

<Icon className="mr-8"color="action">

Search</Icon>

<Input

 placeholder="Search for property name"

className="flex flex-1"disableUnderline

 fullwidth value={searchHeader}

inputProps={{"aria-label": "Search",}}

onChange={handleSearchHeader}/>

</Paper>

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 5, pp 304-311, May-2023

https://doi.org/10.47001/IRJIET/2023.705043

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 309

UI of the indicator component and download button can

be seen in Figure 7.

Figure 7: Input field of the property search

3.3.7 Combining All Components

After completing the creation of the components, they are

then integrated into a single property list feature with

interconnected functionalities. This stage ends all steps.

3.4 Deployment of the Property Listing Feature

After completing the refactoring stage, the development

process is initiated to implement the refactored property list

feature in the Hotel Property Management System. The

deployment process involves merging the refactored program

code into the GitHub repository. The deployment process

utilizes three servers: development server for testing, staging

server to assess application behavior before going into

production, and production server for user access. The system

automatically updates the servers, enabling users to utilize and

test the property list feature.

Once the deployment process is completed, the next stage

is the implementation phase. This phase will provide an

explanation of the functionalities and operations of the

components within the refactored property listing feature.

3.4.1 Property List Table

The property list table serves as the primary component

of the property listing feature. This table presents various

information including the Contract Signing Date, Property

Name, Property Type, Area Name, Partner Property Status,

Google Maps Link, and Whatsapp Link. By default, the

property list table displays 10 properties on the first page.

Nonetheless, it incorporates a pagination feature with buttons

and page indicators located at the bottom right of the table.

This allows users to navigate to the next or previous page,

enabling them to view another set of 10 properties. Moreover,

users have the flexibility to choose the number of properties

displayed per page, as illustrated in Figure 8.

Figure 8: Option to determine the number of data displayed per page

3.4.2 Property List Filter

The purpose of using filters is to narrow down the properties

based on specific criteria. To utilize the property list filters,

simply select the desired filter, click on the downward arrow

to display the filter options, make the appropriate selection,

and finally, click the „Apply Filter‟ button. The system will

then transmit the filter data parameters to the back-end, and

the data will be retrieved based on the applied filters. These

filters can also be used in combination. For example, by

filtering the Canggu area with the Apartment property type,

only properties in the Canggu area with the Apartment

property type will be displayed.

3.4.3 Property List Data Search

Searching for property data follows a similar process to that of

the filter component, albeit with the sole purpose of searching

for property names. Users can input keywords or specific

property names they wish to search for. For instance, if the

keyword “test” is used, any property names containing the

word “test” will be displayed. The search functionality can

also be combined with the filter components. For example,

users can search with the keyword “test” and apply a filter for

the property type “Villa”.

It is important to note that searching for property names may

not always yield result, as the keywords entered might not

match any property names within the data list in the system.

For instance, when searching with the keyword “prop”, if no

properties are displayed, it signifies that there are no property

names containing the word “prop”.

<div className="flex gap-8">

<Chipvariant="outlined"

className={`${classes.chip}${classes.chipGreen}`

}

icon={<DoneAllIconclassName="text-green-dark"

/>}

label={`Completed ${completedProperty}`}/>

<Chipvariant="outlined"

className={`${classes.chip}

${classes.chipOrange}`}

 icon={<HelpOutlineIconclassName="text-

orange-dark" />}

 label={`Pending ${pendingProperty}`}/>

<Chipvariant="outlined"

className={classes.chip}

 label="Download CSV"

 icon={<CloudDownloadIconclassName="text-blue"

/>}

 clickable onClick={()

=>handleDownloadCsvFile(propListCsv, "Property

List", user)}/>

</div>

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 5, pp 304-311, May-2023

https://doi.org/10.47001/IRJIET/2023.705043

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 310

3.4.4 Property List Data Sort and Order

The property list data is initially sorted by name in

ascending order, following an alphabetical arrangement from

A to Z. However, users have the flexibility to customize the

sorting based on their preferences and requirements. To sort

the data by date, users simply need to click on the sort

component, which will rearrange the data accordingly.

Similarly, the order of the data can be modified by clicking on

the order component, enabling users to choose between

descending or ascending order. It is worth noting that sorting

and sequencing the data can also be applied in conjunction

with filtering and property name searching.

3.4.5 Downloading the Property List Data

When users wish to save the property list data as a CSV

or Excel file, they can do so by clicking on the „Download

CSV‟ button located at the top right corner of the table. Upon

downloading, the property list data will be saved as a CSV file

and will display the same data as presented in the property list

table.

3.5 Testing

Once the refactoring process is finished and the features

are deployed on the development server, Quality Assurance

(QA) testing is necessary before proceeding to the production

stage. The testing phase aims to verify that the feature operates

in accordance with the intended functional requirements and is

free from any bugs that may lead to malfunctions when

utilized. The testing process should be conducted iteratively,

rather than just once, until no bugs are detected in the feature.

This iterative approach ensures that the property list feature is

suitable for deployment on production servers.

Table 4: Initial Testing Results

No. Parameter Test Results

1.

The property list data is displayed
correctly

Success

2.
Pagination in the table is functioning

properly
Success

3.
The property list filter is working properly,

providing accurate data

Bugs still found
when filtering

area

4.
The property name search feature is
functioning properly, yielding accurate

results

Success

5.
It is possible to sort the data by name or
date

Success

6.
Both ascending and descending sorting

options are available and work properly
Success

7.
The option to download property data as a
CSV file is provided and can function

properly

Success

Table 4 displays the outcomes of the initial test, revealing

the presence of bugs in the property list filter specifically

related to area filtering. Consequently, developers are required

to perform bug fixes to address the identified issues with the

area filter. Subsequently, a retest was conducted and the

corresponding results are presented in Table 5.

Table 5: Retest results obtained after bug fixes

No. Parameter
Test

Results

1. The property list data is displayed correctly Success

2. Pagination in the table is functioning properly Success

3.
The property list filter is working properly,

providing accurate data
Success

4.
The property name search feature is
functioning properly, yielding accurate results

Success

5. It is possible to sort the data by name or date Success

6.
Both ascending and descending sorting options

are available and work properly
Success

7.
The option to download property data as a

CSV file is provided and can function properly
Success

IV. CONCLUSION

Based on the results of refactoring the property list

feature in the hotel property management system, it can be

concluded that this study has showed the effectiveness of

refactoring in enhancing both the code quality and functional

aspects of a feature. Refactoring improves the code structure,

making it more organized, readable, understandable, and

easier to maintain for developers. The utilization of ReactJS, a

component-based JavaScript library, greatly supports the

refactoring process for the property listing features,

minimizing code repetition. Furthermore, the creation of

reusable table components and filter components proved to be

valuable in implementing similar table and filter features.

These components can be utilized with different datasets,

enhancing code reusability, and reducing development time.

For future development, it is essential to carefully

redesign the system during the refactoring process to ensure

the desired outcomes are achieved. Additionally, in creating

components in ReactJS, prioritizing reusability is highly

recommended to avoid unnecessary code duplication. Finally,

before deploying the feature, thorough testing should be

conducted by developers to identify and resolve any remaining

errors or bugs. This ensures that the refactored property listing

feature delivers an improved user experience compared to its

previous state.

REFERENCES

[1] E. Murphy-Hill, C. Parnin,and A. P. Black, “How We

Refactor and How We Know It”, IEEE Transactions on

Software Engineering, vol. 38, no.1, pp. 5-18, 2012, doi:

10.1109/tse.2011.41.

[2] M. Fowler, “Refactoring: Improving the Design of

Existing Code,” Canada, Addison Wesley Longman,

Inc., 1999.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 5, pp 304-311, May-2023

https://doi.org/10.47001/IRJIET/2023.705043

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 311

[3] T. R. Pradana, “Refactoring”, https://medium.com/ppl-

sutopo/refactoring-6e0e047c285e, 2019.

[4] S. Hammond and D. Umphress, “Test Driven

Development: The State of the Practice,” ACM-SE ‟12:

Proceedings of the 50
th

 Annual Southeast Regional

Conference, pp. 158-163, 2012, doi:

10.1145/2184512.2184550.

Citation of this Article:

Patricia Evericho Mountaines, Zulfa Fatah Akbar Ahmad, “Enhancing Code Quality and Feature Functionality through

Refactoring of the Property Listing Feature in the Hotel Property Management System” Published in International Research

Journal of Innovations in Engineering and Technology - IRJIET, Volume 7, Issue 5, pp 304-311, May 2023.

https://doi.org/10.47001/IRJIET/2023.705043

https://doi.org/10.47001/IRJIET/2023.705043

