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Abstract - Information security has now emerged as an 

essential foundation that the modern world cannot afford 

to abandon or disrespect in any way. Data confidentiality 

is still a preoccupation and a constant concern in the world 

of the electronic industry. Encryption has always been and 

continues to be the go-to solution for achieving data 

security. Despite its effectiveness in maintaining security, 

encryption in its visible version remains an appealing 

option for potential attackers. As a result, multiple studies 

and substantial research have focused on steganography, 

which has an advantage over encryption in that it may 

conceal information without leaving an identifiable format. 

This trait reduces the zeal and difficulties that potential 

attackers confront when attempting to penetrate security 

mechanisms. 

Life is made up of genetic material called DNA, which 

is present in humans and the majority of other species. The 

DNA code is made up of the amino acids adenine (A), 

guanine (G), cytosine (C), and thymine (T). Humans share 

around 98% of these DNA bases, highlighting the 

commonalities across people. The order of these bases 

determines the information that is available for an 

organism's growth and preservation, much like the letters 

in words and sentences. This paper introduces a unique 

masking method that takes advantage of the intrinsic 

characteristics of DNA structure.. It includes converting 

data into a DNA format and then using precise 

computations to integrate it into pre-existing DNA blocks. 

It has been established via careful investigation and 

analysis that this approach is appropriate for obtaining 

information security using unconventional formulae. 
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I. INTRODUCTION 

We conduct both our personal and business lives online. 

We use Internet banking, manufacturing, bill payment, 

communication, and work. Although digital networks and the 

Internet are convenient, there is risk involved. Data security 

guards against theft, corruption, and unauthorized access to 

digital data. It includes everything, including storage and 

hardware. Organizational dynamics and competitiveness are 

being drastically altered by the digital revolution. 

Organizations are producing, processing, and storing more 

data, which calls for data governance. The complexity of 

computer systems is increasing due to the public cloud, 

corporate data centers, and numerous edge devices such as 

robots, IoT sensors, and remote servers. Complexity increases 

the attack surface, which complicates security and monitoring. 

software application security, administrative security, and 

access control security. Company policies are also covered. 

Digital security safeguards assets, data, and personal business 

accounts. Examples include biometrics, web services, 

encrypted devices, antivirus software, and SIM cards for 

smartphones. [1-3]. 

Cryptography is the study of safe routes of 

communication that are visible only to the sender and the 

intended recipient. In Greek, kryptos means hidden. That's 

why encryption matters; it jumbles text into ciphertext and 

back again[4]. Using microdots or merging, cryptography also 

encrypts images. Roman Emperor Julius Caesar employed one 

of the earliest known ciphers, while Ancient Egyptians 

employed similar strategies in intricate hieroglyphics. The 

majority of the services we use on a daily basis are 

accomplished through encryption, which is the ideal answer to 

many information security issues. For many information 

security issues, encryption is the perfect solution, and it 

generates the majority of the services we use on a regular 

basis. decrypt the encrypted messages or examine the 

encryption schemes. The only dilemma of this technology is 

that encryption produces the ciphertext, which, although it 

represents incomprehensible symbols or obscure symbols, 

represents a visual material that anyone who tries to analyze 

the encrypted texts or break encryption algorithms [5-7]. 

Using data concealing is the best way to get around the 

encryption's weak point since hiding leaves no trace that an 

attacker may use to unlock the cipher[8, 9].  

All the information required to build and maintain a 

creature is contained in the complex molecule known as DNA.  

Actually, every single cell in a multi cellular organism has all 

of its DNA. DNA is the basic unit of genetics that determines 

the form and function of all living things. Four chemical bases 

- adenine (A), guanine (G), cytosine (C), and thymine (T) - are 

used by DNA to encode information. Of the 3 billion bases in 

human DNA, about 99% are identical. The way these bases 

are arranged determines the information that may be used to 

grow and maintain an organism, much to how alphabetic 

letters create words and sentences [10-12]. 
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DNA contains great storing qualities that make it an ideal 

setting for concealment operations. These features may be 

used to bury the data that needs to be hidden which might be 

useful for data-hiding techniques. When certain procedures are 

put into place, they might become disorganized and be 

depended upon to do data-hiding and encrypting tasks [13-15]. 

In this study, we will exploit the architecture and 

characteristics of DNA to conceal data. The data masking 

procedure has also made use of DNA sequence format. 

1.1 Data Hiding 

For copyright, authentication, and annotation purposes, 

steganography, also known as data hiding, embeds data into a 

digital medium. Steganography is the study of concealing data 

in multimedia files, such as pictures, sounds, and videos. Since 

the characteristic is visible, the attack point is clear, and the 

goal is to conceal the embedded data. It involves hiding 

information and denying the presence of embedded data. 

Compared to encryption, which just hides the 

communication's content and not its existence, it is a more 

effective technique of message security. So that alterations to 

the carrier cannot be seen, the original message is hidden 

inside of it. Steganography conceals information by using 

cover carriers that appear benign. Steganography conceals 

information by using cover carriers that appear benign[16-18]. 

A message embedded in a bit stream can contain 

plaintext, encrypted text, graphics, or anything else. The cover 

carrier and embedded message are combined in a stage carrier. 

For embedding information, a stego key, such as a 

password, may be required. Stego-images are created by 

concealing a secret message in a cover image[19, 20]. 

The procedure may take the following basic form:  

Stego-medium = cover medium with embedded message + 

stego key. 

 The basic block frame of the steganography system is 

shown in Figure 1. 

 

Figure 1: The Main Block Frame of the Steganography System 

 

1.2 Steganography applications 

Watermarks can be stored in data using several 

steganographic methods. Watermarking just adds information 

to the cover source, whereas steganography conceals 

information. Watermarks can be obscured using 

steganographic techniques, but people will not accept 

them[21]. 

In 1953, sed crystallographic data from Rosalind Franklin 

and Maurice Wilkins to discover the three-dimensional 

structure of DNA. This laid the groundwork for DNA 

replication and protein-encoding in nucleic acids. It took 

longer to develop the ability to "read" or sequence DNA. 

Because DNA molecules grew longer and included fewer, 

more similar components, making differentiation more 

difficult, new ways were required[22, 23]. 

DNA sequencing is a scientific method for determining 

the nucleotide sequence of a DNA molecule. To develop and 

function, cells use the sequence of bases (A, T, C, and G). 

DNA sequencing is required to understand gene and genome 

function. The development of novel DNA sequencing 

technology is a critical component of genomics research[11, 

24] 

1.3 DNA sequences formats 

In this section, several DNA sequence formats as plain 

sequence format will be reviewed:  

IUPAC format  

In this style, the first type is known as IUPAC, and a 

sequence can only consist of IUPAC characters and spaces (no 

digits). 

 

Figure 2: Example sequence of IUPAC type 

Figure 2 depicts an example of this type of sequence [25, 26]. 

FASTQ format 

The FASTQ format is the other sort of format. Sequence 

files of this type can include several sequences. FASTQ is a 

text-based database that holds biological sequences and 

quality rankings. It saves the results of high-throughput 

sequencing instruments. FASTQ sequences are made up of 
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four lines. '@', sequence identifier, optional description, basic 

sequence letters, a "+," perhaps followed by the same 

sequence identifier (and any description), and basic sequence 

letter quality[27]. Figure 3 depicts the format for this type. 

 

Figure 3: Example sequence of FASTQ format. 

EMBL format 

EMBL files may include several sequences. In sequence 

entries, ID lines come before annotation lines. The sequence 

starts with "SQ" and finishes with "//"[28, 29]. 

FASTA format 

FASTA files can include several sequences. It begins 

with a single-line description and sequencing data. The 

description line in the first column must begin with a > sign 

[28, 30]. 

GCG format 

GCG sequence files include a single sequence that begins 

with annotation lines and ends with two dot (".") characters. 

This line contains the sequence ID, length, and checksum. 

This format should only be used for GCG files [31, 32]. 

GCG New GCG-RSF files may have several sequences. 

This format should only be used for GCG files. -RSF stands 

for rich sequence format [33, 34]. 

GenBank format 

Several sequences are included in GenBank sequence files. 

LOCUS and several annotation lines precede GenBank 

sequences. The sequence starts with "ORIGIN" and finishes 

with "//"[35, 36]. 

IG format 

A sequence file in IG format may have numerous 

sequences, each with several comment lines that must begin 

with a semicolon (";"), a line with the sequence name (which 

must not contain spaces), and the sequence itself ending with 

'1' for linear sequences or '2' for circular sequences [37]. 

1.4 Arnold's Cat map 

A two-dimensional chaotic map that can be used to 

generate pseudo-random permutations of image pixels. Here's 

an algorithm that incorporates Arnold's cat map for computing 

the hiding location [38-40]. 

II. THE PROPOSED METHOD 

This paper will use DNA formats to convert the message 

(m) that we wish to hide into a specific DNA encoding format. 

We select a certain carrier (C) (a text, picture, or video file) 

and convert it to one of the DNA formats. Following that, the 

message (m) is hidden within the carrier file using a randomly 

generated key for the insertion location. The final file was 

changed from DNA format to another format, thus the 

concealed message and its features were lost in a way that 

made the attacker's guess impossible. 

2.1 The proposed method’s general stages 

The method of choosing the kind of DNA format will be 

random and will be based on a value acquired as a result of a 

mathematical process, and the format will be translated into 

one of the DNA formulas based on this value. Figure 4 

illustrates the suggested method's block diagram for both 

sender and receiver. In general, the proposed method includes 

two stages: 

 

Figure 4: The proposed method for both sender and receiver 

Embedding (Sender): 

 Use the cover file (c) and the secret message (m). 

 Convert the cover file (c) and the secret message (m) into 

DNA format using a normal formula. 

 Generate a value "v" based on which a specific DNA 

formula is selected to convert the cover file (c) into a 

modified DNA format (cf). 

 Generate a value "v1" that determines the quality of the 

DNA format to which the secret message (m) will be 

converted.  

 Convert the secret message (m) into a specific DNA 

format (mf) based on v1. 
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 Determine a location (p) within the modified cover file 

(cf) where the modified secret message (mf) will be 

hidden. 

 Hide the modified secret message (mf) within the 

modified cover file (cf) to obtain a stego-file, which 

contains the hidden message. 

 Send the stego-file to the receiver. 

Extraction Algorithm (Receiver): 

 Obtain the stego-file. 

 Extract the modified secret message (mf) from the 

modified cover file (cf) using the specified location (p). 

 Use the value "v" to convert the modified cover file (cf) 

back to its original form (c). 

 Use the value "v1" to convert the modified secret 

message (mf) back to the original message (m). 

 Retrieve the original cover file (c) and the original 

message (m). 

 Convert the cover file (c) and the message (m) into 

binary form. 

 The receiver now has the secure message (m). 

2.2 Hiding Location Computation Algorithm 

The following algorithm can be used to compute the 

location (p) for hiding the modified secret message within the 

modified cover file: 

 Determine the size of the modified secret message (mf) 

and the modified cover file (cf). 

 Calculate the maximum number of possible hiding 

locations by subtracting the size of the modified secret 

message from the size of the modified cover file: 

max_locations = size(cf) - size(mf). 

 Generate a random number within the range of possible 

gnidih locations: random_location = random(0, 

max_locations). 

 Set the hiding location (p) as the starting position of the 

random_location within the modified cover file. 

Note: In this approach, size(cf) denotes the size (in bits, bytes, 

or another suitable unit) of the updated cover file, and size(mf) 

denotes the size of the modified secret message. 

Users can increase the security of the stego-file by 

selecting a hiding site at random from among those that are 

available, ensuring that the secret message is hidden in a less 

obvious way. 

We can use a chaotic map to generate a sequence of 

pseudo-random numbers to compute the hiding location (p) 

using a chaos approach. Here's an example algorithm that uses 

a chaos-based way to calculate the hiding location; the main 

algorithm is as follows. 

Determine the size of the updated secret message (mf) 

and the modified cover file (cf). 

 Calculate the maximum number of possible hiding 

locations by subtracting the size of the modified secret 

message from the size of the modified cover file: 

max_locations = size(cf) - size(mf). 

 Initialize a chaotic map with appropriate parameters. 

 Iterate the chaotic map for a sufficient number of times 

to reach a state of chaos and discard the initial transient. 

 Generate a sequence of pseudo-random numbers using 

the chaotic map, each within the range of possible hiding 

locations: chaotic_sequence = [chaotic_map_next() % 

max_locations for _ in range(size(mf))]. 

 Set the hiding location (p) as the starting position of the 

chaotic_sequence within the modified cover file. 

Now the algorithm will be as swollof for both sender and 

receiver.  

Embedding Algorithm: 

 Enter the cover file (c) and the secret message (m). 

 Convert the cover file (c) and the secret message (m) into 

DNA format using a normal formula. 

 Generate a value "v" based on which a specific DNA 

formula is selected to convert the cover file (c) into a 

modified DNA format (cf). 

 Generate a value "v1" that determines the quality of the 

DNA format to which the secret message (m) will be 

converted. Convert the secret message (m) into a specific 

DNA format (mf) based on v1. 

 Determine the size of the modified secret message (mf) 

and the modified cover file (cf). 

 Calculate the maximum number of possible hiding 

locations by subtracting the size of the modified secret 

message from the size of the modified cover file: 

max_locations = size(cf) - size(mf). 

 Initialize a chaotic map with appropriate parameters. 

 Iterate the chaotic map for a sufficient number of times 

to reach a state of chaos and discard the initial transient. 

 Generate a sequence of pseudo-random numbers using 

the chaotic map, each within the range of possible hiding 

locations: chaotic_sequence = [chaotic_map_next() % 

max_locations for _ in range(size(mf))]. 

 Set the hiding location (p) as the starting position of the 

chaotic_sequence within the modified cover file. 

 Hide the modified secret message (mf) within the 

modified cover file (cf) at the determined hiding location 

(p) to obtain a stego-file. 

 Send the stego-file to the receiver. 
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Extraction Algorithm (receiver): 

 Obtain the stego-file. 

 Extract the modified secret message (mf) from the 

modified cover file (cf) using the specified hiding 

location (p). 

 Use the value "v" to convert the modified cover file (cf) 

back to its original form (c). 

 Use the value "v1" to convert the modified secret 

message (mf) back to the original message (m). 

 Retrieve the original cover file (c) and the original 

message (m). 

 Convert the cover file (c) and the message (m) into 

binary form. 

 The receiver now has the secure message (m). 

Using Arnold's cat map to calculate the hiding location (p).  

We may offer a novel way for determining the hiding 

location (p) by employing a specific chaos method with multi-

dimensional arrays, and we will use Arnold's cat map to do 

this. For computing the hiding place, here's an algorithm that 

utilizes Arnold's cat map:  It's also known as the Chaos-Based 

Hiding Location Computation Algorithm Using Arnold's Cat 

Map: 

The general steps for this algorithm will be as follows: 

 Determine the size of the modified secret message (mf) 

and the modified cover file (cf). 

 Calculate the maximum number of possible hiding 

locations by subtracting the size of the modified secret 

message from the size of the modified cover file: 

max_locations = size(cf) - size(mf). 

 Initialize a two-dimensional array (A) of size n x n, 

where n is a positive integer larger than the maximum 

size of the modified cover file. 

- Set the initial values of the array elements in A as 

indices of their positions: A[i][j] = i * n + j for i, j = 

0 to n-1. 

- Iterate the Arnold's cat map for a sufficient number 

of times to reach a state of chaos and discard the 

initial transient. In each iteration, apply the 

following transformations to update the array A: 

- A[i][j] = (A[i][j] + A[j][i]) % n for i, j = 0 to n-1. 

- Swap the values of A[i][j] and A[j][i]. 

- Generate a sequence of pseudo-random numbers 

using the chaotic array A. Select a subset of size 

equal to the size of the modified secret message 

(mf) by considering the indices from A. 

- chaotic_sequence = [A[i % n][j % n] % 

max_locations for i, j = 0 to size(mf)-1]. 

- Set the hiding location (p) as the starting position of 

the chaotic_sequence within the modified cover 

file. 

- Here's the updated complete algorithm for both 

sender and receiver  

- Enter the cover file (c) and the secret message (m). 

- Convert the cover file (c) and the secret message 

(m) into DNA format using a normal formula. 

- Generate a value "v" based on which a specific 

DNA formula is selected to convert the cover file 

(c) into a modified DNA format (cf). 

- Generate a value "v1" that determines the quality of 

the DNA format to which the secret message (m) 

will be converted. Convert the secret message (m) 

into a specific DNA format (mf) based on v1. 

- Determine the size of the modified secret message 

(mf) and the modified cover file (cf). 

- Calculate the maximum number of possible hiding 

locations by subtracting the size of the modified 

secret message from the size of the modified cover 

file: max_locations = size(cf) - size(mf). 

- Initialize a two-dimensional array (A) of size n x n, 

where n is a positive integer larger than the 

maximum size of the modified cover file. 

- Set the initial values of the array elements in A as 

indices of their positions: A[i][j] = i * n + j for i, j = 

0 to n-1. 

- Iterate the Arnold's cat map for a sufficient number 

of times to reach a state of chaos and discard the 

initial transient. In each iteration, apply the 

following transformations to update the array A: 

- A[i][j] = (A[i][j] + A[j][i]) % n for i, j = 0 to n-1. 

- Swap the values of A[i][j] and A[j][i]. 

- Generate a sequence of pseudo-random numbers 

using the chaotic array A. Select a subset of size 

equal to the size of the modified secret message 

(mf) by considering the indices from A. 

- chaotic_sequence = [A[i % n][j % n] % 

max_locations for i, j = 0 to size(mf)-1]. 

- Set the hiding location (p) as the starting position of 

the chaotic_sequence within the modified cover 

file. 

- Hide the modified secret message (mf) within the 

modified cover file (cf) at the determined hiding 

location (p) to obtain a stego-file. 

- Send the stego-file to the receiver. 

Extraction Algorithm: 

 Obtain the stego-file. 

 Extract the modified secret message (mf) from the 

modified cover file (cf) using the specified hiding 

location (p). 
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 Use the value "v" to convert the modified cover file (cf) 

back to its original form (c). 

 Use the value "v1" to convert the modified secret 

message (mf) back to the original message (m). 

 Retrieve the original cover file (c) and the original 

message (m). 

 Convert the cover file (c) and the message (m) into 

binary form. 

 The receiver now has the secure message (m). 

It could be increasing the complexity of the hiding 

method by using I more complex chaos method to compute 

the hiding location (p), we can consider the Lorenz system. 

The Lorenz system is a set of three coupled differential 

equations that exhibit chaotic behavior. Here's an updated 

algorithm that uses the Lorenz system for computing the 

hiding location which can be titled as Chaos-Based Hiding 

Location Computation Algorithm using the Lorenz System: 

The general algorithm will be as the following:  

 Determine the size of the modified secret message (mf) 

and the modified coverfile (cf). 

 Calculate the maximum number of possible hiding 

locations by subtracting the size of the modified secret 

message from the size of the modified cover file: 

max_locations = size(cf) - size(mf). 

 Initialize the parameters of the Lorenz system: σ, ρ, and 

β. 

 Generate a chaotic sequence of numbers using the 

Lorenz system: 

 Initialize the state variables: x0, y0, and z0. 

 for i = 0 to size(mf)-1: 

 Compute the time derivatives using the Lorenz system 

equations: 

dx/dt = σ * (y - x) 

dy/dt = x * (ρ - z) - y 

dz/dt = x * y - β * z 

 Integrate the equations numerically using a suitable 

integration method (e.g., Euler's method or Runge-Kutta 

method) to obtain the updated values of x, y, and z. 

 chaotic_sequence[i] = floor(|x| * max_locations) 

 Update the initial state variables: x0 = x, y0 = y, z0 = z. 

 Set the hiding location (p) as the starting position of the 

chaotic_sequence within the modified cover file. 

 The rest of the embedding and extraction algorithms can 

remain the same as described previously. 

III. RESULTS AND DISCUSSIONS 

To illustrate the proposed method, it needs to show the 

steps of ehtalgorithm for both embedding and extracting. To 

achieve this both the cover file and the message will be 

represented in a binary format. The values for the cover file 

(c) and secret message (m) are as follows: 

Cover file (c): 11010101 10110010 01101000 Secret message 

(m): 01100110 11011011 

 Value v: 3 

 Value v1: 2 

 Array size n: 4 

Number of iterations for Arnold's Cat Map: 5 now let's go 

through each step of the algorithm and record the results in a 

table (1): (Embedding). 

Table 1: The steps of the proposed algorithm for (Embedding) 

Step Description Result 

1 Given cover file (c): 11010101 10110010 01101000 - 

2 Given secret message (m): 01100110 11011011 - 

3 

Convert cover file (c) to DNA format (c_dna) using a 

normal formula 

c_dna= TCGACGAGCGCTAG TCAGCTAG 

4 

Convert secret message (m) to DNA format (m_dna) using 

a normal formula 

m_dna = GACTCGAC TTATGCG 

5 

Generate value "v" (v = 3) to select a specific DNA 

formula 

v = 3 

6 

Generate value "v1" (v1 = 2) to determine the quality of 

the DNA format 

v1 = 2 

7 

Determine the size of the modified secret message (mf) 

and modified cover file (cf) 

size(mf) = 8, size(cf) = 24 

8 Initialize a 2D array A of size n x n (n = 4) A = [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]] 

9 Iterate Arnold's Cat Map for 5 iterations A = [[6, 4, 2, 0], [7, 5, 3, 1], [14, 12, 10, 8], [15, 13, 11, 9]] 

 

Generate a sequence of pseudo-random numbers using 

chaotic array A 

chaotic_sequence = [6, 4, 2, 0, 7, 5, 3, 1] 

11 

Set hiding location (p) as the starting position of 

chaotic_sequence within a modified cover file 

p = 6 
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12 

Hide modified secret message (mf) within the modified 

cover file (cf) at hiding location (p) 

cf=AGTCGACGACTCGACAGCGCTAG TCAGCTAG 

13 Send stego-file to the receiver - 

Now let's move on to the extraction algorithm: Table (2) provides the intermediate results of the algorithm,  

Table 2: The steps of the proposed algorithm for (Extraction) 

Step Description Result 

1 Obtain stego-file Stego-file: AGTCGACGACTCGACAGCGCTAG TCAGCTAG 

2 Extract modified secret message (mf) from modified 

cover file (cf) using hiding location (p) 

mf = GACTCGAC 

3 Use value "v" (v = 3) to convert the modified cover file 

(cf) back to its original form (c) 

c = AGTCGACG AGCGCTAG TCAGCTAG 

4 Use value "v1" (v1 = 2) to convert (mf) back to (m) m = 01100110 

5 Retrieve (c) and (m) in binary format (c): 11010101 10110010 01101000(m): 01100110 

 

To evaluate the security of the above example from a 

stеganography prospective, we can consider the following 

security measures: 

Embedding Capacity: The algorithm's security can be assessed 

by examining the embedding capacity, which refers to the 

amount of secret data that can be hidden within the cover file.  

In thе example, the size of the modified secret message (mf) 

and modifiеd covеrfilе (cf) arе dеtеrminеd,  indicating thе 

capacity of thе algorithm to hidе thе sеcrеt mеssagе.  Thе 

largеr thе еmbеdding capacity, thе morе sеcurе thе algorithm,  

as it bеcomеs hardеr for an attackеr to dеtеct thе hiddеn 

information.  

Imperceptibility: Imperceptibility measures how wеll thе 

stеgo-filе blеnds with thе original covеr filе, еnsuring that thе 

modifications madе during еmbеdding arе not еasily 

noticеablе to human obsеrvеrs.  If thе stеgo-filе closеly 

rеsеmblеs thе original covеrfilе, it indicatеs a highеr lеvеl of 

impеrcеptibility, еnhancing thе sеcurity of thе algorithm.  

Robustnеss to Attacks: The sеcurity of thе stеganography 

algorithm can bе еvaluatеd by assеssing its robustnеss against 

various attacks.  Common attacks include visual analysis, 

statistical analysis, and known stеganography detection 

algorithms.  A sеcurе stеganography algorithm should 

withstand thеsе attacks and еnsurе that thе hiddеn information 

rеmains concеalеd.  

Kеy Managеmеnt: Thе sеcurity of thе algorithm also rеliеs on 

thе managеmеnt of thе sеcrеt paramеtеrs, such as thе values v 

and v1, which arе usеd for thе hiding process.  If thеsе 

paramеtеrs arе kеpt sеcrеt and propеrly managed, it adds an 

еxtra layеr of sеcurity to thе algorithm. 

Resistance, to Steganalysis; Steganalysis refers to the 

process of identifying information within a stego file. An 

effective steganography algorithm should be designed to 

withstand steganalysis techniques making it difficult for an 

attacker to detect the concealed message. 

Evaluation of Security Measures for the Given Example 

Using Numerical Assessments; 

Embedding Capacity; 

 Size of the message (mf); 16 bits 

 Size of modified cover file (cf); 48 bits 

 Embedding capacity percentage; (mf size / cf size) * 100 = 

(16 / 48) * 100 = 33.33%. 

 Imperceptibility; 

Although the algorithm doesn't explicitly mention 

imperceptibility measures, we can assume that any 

modifications made during embedding are visually 

indistinguishable. Based on this assumption we can rate the 

imperceptibility as an 8 out of 10. 

 Robustness to Attacks; 

The algorithm doesn't specify any measures taken to 

enhance robustness against attacks. Therefore, we assign it a 

rating of 5 out of 10 in terms of robustness. 

 Key Management; 

To ensure embedding and extraction the algorithm relies 

on keeping the values v and v1 confidential through key 

management practices. Considering this approach we rate its 

management effectiveness as a 9 out of 10. 

Resistance to Steganalysis; The algorithm does not give 

information, about how it can withstand steganalysis 

techniques. We rate its resistance as average giving it a score 

of 6, out of 10. 
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Keep in mind that the numerical ratings mentioned above 

are subjective and based on the given example. To conduct a 

security assessment, we would need to analyze and test the 

algorithm extensively against different attacks and 

steganalysis techniques. 

Original cover file (c): 

101010101010101001010101010101011010101010101010 

(512 bits) 

Stego-file: TAGCTAGCTAGCTAGC 

ATAGCTAGCTAGCTAG GCGCGCGCGCGCGCGC 

ATAGCTAGCTAGCTAG GCATGCATGCATGCAT 

Step 1: Convert the cover file (c) and stego-file to their binary 

representations: 

Original cover file (c) in binary: 

101010101010101001010101010101011010101010101010 

Stego-file in binary: 

101011010011101100100110101001001010010100100101 

Step 2: Calculate the Mean Squared Error (MSE) between the 

cover file and stego-file: 

MSE = (1/n) * Σ[(c(i) - s(i))^2] 

Where n is the total number of bits, c(i) is the i-th bit of the 

cover file, and s(i) is the i-th bit of the stego-file. 

Using the provided binary representations, we can calculate 

the MSE. 

MSE = (1/512) * [(1-1)^2 + (0-0)^2 + (1-1)^2 + ... + (0-1)^2 + 

(1-0)^2 + (0-1)^2 + ... + (1-1)^2 + (0-0)^2 + (1-1)^2] 

= (1/512) * [0 + 0 + 0 + ... + 1 + 1 + 1 + ... + 1 + 0 + 0] 

= (1/512) * [3] 

= 0.005859375 

Step 3: Calculate the maximum possible pixel value (Pmax) in 

the binary representation. In this case, Pmax = 1. 

Step 4: Calculate the PSNR using the formula: 

PSNR = 20 * log10(Pmax / sqrt(MSE)) 

PSNR = 20 * log10(1 / sqrt(0.005859375)) 

= 20 * log10(1 / 0.0765304) 

= 20 * log10(13.042) 

= 20 * 1.115 

= 22.3 dB (approximately). 

A PSNR of around 22.3 dB suggests that the original 

cover file and the stego-file have a pretty high level of 

accuracy. Higher PSNR values, in general, indicate greater 

quality and less distortion between files. As a result, while a 

PSNR value of approximately 22.3 dB indicates good 

consistency between the original cover file and the stego-file, 

other security measures, attack robustness, and application-

specific requirements must all be considered when evaluating 

the overall effectiveness of the steganographic technique. 

A greater PSNR in the context of steganography indicates 

that the concealed message has been inserted in such a manner 

that the perceptual discrepancies between the cover file and 

the stego-file are minimized. This might be advantageous in 

terms of keeping the visual quality of the cover file while 

effectively completing the task. 

IV. CONCLUSION 

The study investigated the use of a DNA-based 

concealment technique in steganography. For embedding and 

retrieving the concealed message, the program used a chaos-

based technique based on Arnold's Cat Map. For numerous 

circumstances, including varied bit lengths and DNA 

representations, the research presented step-by-step 

techniques, examples, and computations. Overall, the study 

advances our knowledge of and ability to use steganography 

that employs DNA-based concealment algorithms and chaotic 

techniques. When using such strategies for concealing 

sensitive information within cover files, it emphasizes the 

value of taking security precautions, quality assessments, and 

practical consequences into account. The suggested 

steganographic method's resilience, effectiveness, and possible 

weaknesses may be investigated in more detail and applied to 

real-world circumstances. 
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