
International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 8, pp 48-57, August-2023

https://doi.org/10.47001/IRJIET/2023.708007

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 48

Data Hiding Using DNA Segments

Auday H. AL-Wattar

Lecturer, Computer Science and Mathematics, University of Mosul, Mosul, Iraq

Abstract - Information security has now emerged as an

essential foundation that the modern world cannot afford

to abandon or disrespect in any way. Data confidentiality

is still a preoccupation and a constant concern in the world

of the electronic industry. Encryption has always been and

continues to be the go-to solution for achieving data

security. Despite its effectiveness in maintaining security,

encryption in its visible version remains an appealing

option for potential attackers. As a result, multiple studies

and substantial research have focused on steganography,

which has an advantage over encryption in that it may

conceal information without leaving an identifiable format.

This trait reduces the zeal and difficulties that potential

attackers confront when attempting to penetrate security

mechanisms.

Life is made up of genetic material called DNA, which

is present in humans and the majority of other species. The

DNA code is made up of the amino acids adenine (A),

guanine (G), cytosine (C), and thymine (T). Humans share

around 98% of these DNA bases, highlighting the

commonalities across people. The order of these bases

determines the information that is available for an

organism's growth and preservation, much like the letters

in words and sentences. This paper introduces a unique

masking method that takes advantage of the intrinsic

characteristics of DNA structure.. It includes converting

data into a DNA format and then using precise

computations to integrate it into pre-existing DNA blocks.

It has been established via careful investigation and

analysis that this approach is appropriate for obtaining

information security using unconventional formulae.

Keywords: Security, Steganography, Data hiding, DNA.

I. INTRODUCTION

We conduct both our personal and business lives online.

We use Internet banking, manufacturing, bill payment,

communication, and work. Although digital networks and the

Internet are convenient, there is risk involved. Data security

guards against theft, corruption, and unauthorized access to

digital data. It includes everything, including storage and

hardware. Organizational dynamics and competitiveness are

being drastically altered by the digital revolution.

Organizations are producing, processing, and storing more

data, which calls for data governance. The complexity of

computer systems is increasing due to the public cloud,

corporate data centers, and numerous edge devices such as

robots, IoT sensors, and remote servers. Complexity increases

the attack surface, which complicates security and monitoring.

software application security, administrative security, and

access control security. Company policies are also covered.

Digital security safeguards assets, data, and personal business

accounts. Examples include biometrics, web services,

encrypted devices, antivirus software, and SIM cards for

smartphones. [1-3].

Cryptography is the study of safe routes of

communication that are visible only to the sender and the

intended recipient. In Greek, kryptos means hidden. That's

why encryption matters; it jumbles text into ciphertext and

back again[4]. Using microdots or merging, cryptography also

encrypts images. Roman Emperor Julius Caesar employed one

of the earliest known ciphers, while Ancient Egyptians

employed similar strategies in intricate hieroglyphics. The

majority of the services we use on a daily basis are

accomplished through encryption, which is the ideal answer to

many information security issues. For many information

security issues, encryption is the perfect solution, and it

generates the majority of the services we use on a regular

basis. decrypt the encrypted messages or examine the

encryption schemes. The only dilemma of this technology is

that encryption produces the ciphertext, which, although it

represents incomprehensible symbols or obscure symbols,

represents a visual material that anyone who tries to analyze

the encrypted texts or break encryption algorithms [5-7].

Using data concealing is the best way to get around the

encryption's weak point since hiding leaves no trace that an

attacker may use to unlock the cipher[8, 9].

All the information required to build and maintain a

creature is contained in the complex molecule known as DNA.

Actually, every single cell in a multi cellular organism has all

of its DNA. DNA is the basic unit of genetics that determines

the form and function of all living things. Four chemical bases

- adenine (A), guanine (G), cytosine (C), and thymine (T) - are

used by DNA to encode information. Of the 3 billion bases in

human DNA, about 99% are identical. The way these bases

are arranged determines the information that may be used to

grow and maintain an organism, much to how alphabetic

letters create words and sentences [10-12].

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 8, pp 48-57, August-2023

https://doi.org/10.47001/IRJIET/2023.708007

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 49

DNA contains great storing qualities that make it an ideal

setting for concealment operations. These features may be

used to bury the data that needs to be hidden which might be

useful for data-hiding techniques. When certain procedures are

put into place, they might become disorganized and be

depended upon to do data-hiding and encrypting tasks [13-15].

In this study, we will exploit the architecture and

characteristics of DNA to conceal data. The data masking

procedure has also made use of DNA sequence format.

1.1 Data Hiding

For copyright, authentication, and annotation purposes,

steganography, also known as data hiding, embeds data into a

digital medium. Steganography is the study of concealing data

in multimedia files, such as pictures, sounds, and videos. Since

the characteristic is visible, the attack point is clear, and the

goal is to conceal the embedded data. It involves hiding

information and denying the presence of embedded data.

Compared to encryption, which just hides the

communication's content and not its existence, it is a more

effective technique of message security. So that alterations to

the carrier cannot be seen, the original message is hidden

inside of it. Steganography conceals information by using

cover carriers that appear benign. Steganography conceals

information by using cover carriers that appear benign[16-18].

A message embedded in a bit stream can contain

plaintext, encrypted text, graphics, or anything else. The cover

carrier and embedded message are combined in a stage carrier.

For embedding information, a stego key, such as a

password, may be required. Stego-images are created by

concealing a secret message in a cover image[19, 20].

The procedure may take the following basic form:

Stego-medium = cover medium with embedded message +

stego key.

 The basic block frame of the steganography system is

shown in Figure 1.

Figure 1: The Main Block Frame of the Steganography System

1.2 Steganography applications

Watermarks can be stored in data using several

steganographic methods. Watermarking just adds information

to the cover source, whereas steganography conceals

information. Watermarks can be obscured using

steganographic techniques, but people will not accept

them[21].

In 1953, sed crystallographic data from Rosalind Franklin

and Maurice Wilkins to discover the three-dimensional

structure of DNA. This laid the groundwork for DNA

replication and protein-encoding in nucleic acids. It took

longer to develop the ability to "read" or sequence DNA.

Because DNA molecules grew longer and included fewer,

more similar components, making differentiation more

difficult, new ways were required[22, 23].

DNA sequencing is a scientific method for determining

the nucleotide sequence of a DNA molecule. To develop and

function, cells use the sequence of bases (A, T, C, and G).

DNA sequencing is required to understand gene and genome

function. The development of novel DNA sequencing

technology is a critical component of genomics research[11,

24]

1.3 DNA sequences formats

In this section, several DNA sequence formats as plain

sequence format will be reviewed:

IUPAC format

In this style, the first type is known as IUPAC, and a

sequence can only consist of IUPAC characters and spaces (no

digits).

Figure 2: Example sequence of IUPAC type

Figure 2 depicts an example of this type of sequence [25, 26].

FASTQ format

The FASTQ format is the other sort of format. Sequence

files of this type can include several sequences. FASTQ is a

text-based database that holds biological sequences and

quality rankings. It saves the results of high-throughput

sequencing instruments. FASTQ sequences are made up of

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 8, pp 48-57, August-2023

https://doi.org/10.47001/IRJIET/2023.708007

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 50

four lines. '@', sequence identifier, optional description, basic

sequence letters, a "+," perhaps followed by the same

sequence identifier (and any description), and basic sequence

letter quality[27]. Figure 3 depicts the format for this type.

Figure 3: Example sequence of FASTQ format.

EMBL format

EMBL files may include several sequences. In sequence

entries, ID lines come before annotation lines. The sequence

starts with "SQ" and finishes with "//"[28, 29].

FASTA format

FASTA files can include several sequences. It begins

with a single-line description and sequencing data. The

description line in the first column must begin with a > sign

[28, 30].

GCG format

GCG sequence files include a single sequence that begins

with annotation lines and ends with two dot (".") characters.

This line contains the sequence ID, length, and checksum.

This format should only be used for GCG files [31, 32].

GCG New GCG-RSF files may have several sequences.

This format should only be used for GCG files. -RSF stands

for rich sequence format [33, 34].

GenBank format

Several sequences are included in GenBank sequence files.

LOCUS and several annotation lines precede GenBank

sequences. The sequence starts with "ORIGIN" and finishes

with "//"[35, 36].

IG format

A sequence file in IG format may have numerous

sequences, each with several comment lines that must begin

with a semicolon (";"), a line with the sequence name (which

must not contain spaces), and the sequence itself ending with

'1' for linear sequences or '2' for circular sequences [37].

1.4 Arnold's Cat map

A two-dimensional chaotic map that can be used to

generate pseudo-random permutations of image pixels. Here's

an algorithm that incorporates Arnold's cat map for computing

the hiding location [38-40].

II. THE PROPOSED METHOD

This paper will use DNA formats to convert the message

(m) that we wish to hide into a specific DNA encoding format.

We select a certain carrier (C) (a text, picture, or video file)

and convert it to one of the DNA formats. Following that, the

message (m) is hidden within the carrier file using a randomly

generated key for the insertion location. The final file was

changed from DNA format to another format, thus the

concealed message and its features were lost in a way that

made the attacker's guess impossible.

2.1 The proposed method’s general stages

The method of choosing the kind of DNA format will be

random and will be based on a value acquired as a result of a

mathematical process, and the format will be translated into

one of the DNA formulas based on this value. Figure 4

illustrates the suggested method's block diagram for both

sender and receiver. In general, the proposed method includes

two stages:

Figure 4: The proposed method for both sender and receiver

Embedding (Sender):

 Use the cover file (c) and the secret message (m).

 Convert the cover file (c) and the secret message (m) into

DNA format using a normal formula.

 Generate a value "v" based on which a specific DNA

formula is selected to convert the cover file (c) into a

modified DNA format (cf).

 Generate a value "v1" that determines the quality of the

DNA format to which the secret message (m) will be

converted.

 Convert the secret message (m) into a specific DNA

format (mf) based on v1.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 8, pp 48-57, August-2023

https://doi.org/10.47001/IRJIET/2023.708007

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 51

 Determine a location (p) within the modified cover file

(cf) where the modified secret message (mf) will be

hidden.

 Hide the modified secret message (mf) within the

modified cover file (cf) to obtain a stego-file, which

contains the hidden message.

 Send the stego-file to the receiver.

Extraction Algorithm (Receiver):

 Obtain the stego-file.

 Extract the modified secret message (mf) from the

modified cover file (cf) using the specified location (p).

 Use the value "v" to convert the modified cover file (cf)

back to its original form (c).

 Use the value "v1" to convert the modified secret

message (mf) back to the original message (m).

 Retrieve the original cover file (c) and the original

message (m).

 Convert the cover file (c) and the message (m) into

binary form.

 The receiver now has the secure message (m).

2.2 Hiding Location Computation Algorithm

The following algorithm can be used to compute the

location (p) for hiding the modified secret message within the

modified cover file:

 Determine the size of the modified secret message (mf)

and the modified cover file (cf).

 Calculate the maximum number of possible hiding

locations by subtracting the size of the modified secret

message from the size of the modified cover file:

max_locations = size(cf) - size(mf).

 Generate a random number within the range of possible

gnidih locations: random_location = random(0,

max_locations).

 Set the hiding location (p) as the starting position of the

random_location within the modified cover file.

Note: In this approach, size(cf) denotes the size (in bits, bytes,

or another suitable unit) of the updated cover file, and size(mf)

denotes the size of the modified secret message.

Users can increase the security of the stego-file by

selecting a hiding site at random from among those that are

available, ensuring that the secret message is hidden in a less

obvious way.

We can use a chaotic map to generate a sequence of

pseudo-random numbers to compute the hiding location (p)

using a chaos approach. Here's an example algorithm that uses

a chaos-based way to calculate the hiding location; the main

algorithm is as follows.

Determine the size of the updated secret message (mf)

and the modified cover file (cf).

 Calculate the maximum number of possible hiding

locations by subtracting the size of the modified secret

message from the size of the modified cover file:

max_locations = size(cf) - size(mf).

 Initialize a chaotic map with appropriate parameters.

 Iterate the chaotic map for a sufficient number of times

to reach a state of chaos and discard the initial transient.

 Generate a sequence of pseudo-random numbers using

the chaotic map, each within the range of possible hiding

locations: chaotic_sequence = [chaotic_map_next() %

max_locations for _ in range(size(mf))].

 Set the hiding location (p) as the starting position of the

chaotic_sequence within the modified cover file.

Now the algorithm will be as swollof for both sender and

receiver.

Embedding Algorithm:

 Enter the cover file (c) and the secret message (m).

 Convert the cover file (c) and the secret message (m) into

DNA format using a normal formula.

 Generate a value "v" based on which a specific DNA

formula is selected to convert the cover file (c) into a

modified DNA format (cf).

 Generate a value "v1" that determines the quality of the

DNA format to which the secret message (m) will be

converted. Convert the secret message (m) into a specific

DNA format (mf) based on v1.

 Determine the size of the modified secret message (mf)

and the modified cover file (cf).

 Calculate the maximum number of possible hiding

locations by subtracting the size of the modified secret

message from the size of the modified cover file:

max_locations = size(cf) - size(mf).

 Initialize a chaotic map with appropriate parameters.

 Iterate the chaotic map for a sufficient number of times

to reach a state of chaos and discard the initial transient.

 Generate a sequence of pseudo-random numbers using

the chaotic map, each within the range of possible hiding

locations: chaotic_sequence = [chaotic_map_next() %

max_locations for _ in range(size(mf))].

 Set the hiding location (p) as the starting position of the

chaotic_sequence within the modified cover file.

 Hide the modified secret message (mf) within the

modified cover file (cf) at the determined hiding location

(p) to obtain a stego-file.

 Send the stego-file to the receiver.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 8, pp 48-57, August-2023

https://doi.org/10.47001/IRJIET/2023.708007

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 52

Extraction Algorithm (receiver):

 Obtain the stego-file.

 Extract the modified secret message (mf) from the

modified cover file (cf) using the specified hiding

location (p).

 Use the value "v" to convert the modified cover file (cf)

back to its original form (c).

 Use the value "v1" to convert the modified secret

message (mf) back to the original message (m).

 Retrieve the original cover file (c) and the original

message (m).

 Convert the cover file (c) and the message (m) into

binary form.

 The receiver now has the secure message (m).

Using Arnold's cat map to calculate the hiding location (p).

We may offer a novel way for determining the hiding

location (p) by employing a specific chaos method with multi-

dimensional arrays, and we will use Arnold's cat map to do

this. For computing the hiding place, here's an algorithm that

utilizes Arnold's cat map: It's also known as the Chaos-Based

Hiding Location Computation Algorithm Using Arnold's Cat

Map:

The general steps for this algorithm will be as follows:

 Determine the size of the modified secret message (mf)

and the modified cover file (cf).

 Calculate the maximum number of possible hiding

locations by subtracting the size of the modified secret

message from the size of the modified cover file:

max_locations = size(cf) - size(mf).

 Initialize a two-dimensional array (A) of size n x n,

where n is a positive integer larger than the maximum

size of the modified cover file.

- Set the initial values of the array elements in A as

indices of their positions: A[i][j] = i * n + j for i, j =

0 to n-1.

- Iterate the Arnold's cat map for a sufficient number

of times to reach a state of chaos and discard the

initial transient. In each iteration, apply the

following transformations to update the array A:

- A[i][j] = (A[i][j] + A[j][i]) % n for i, j = 0 to n-1.

- Swap the values of A[i][j] and A[j][i].

- Generate a sequence of pseudo-random numbers

using the chaotic array A. Select a subset of size

equal to the size of the modified secret message

(mf) by considering the indices from A.

- chaotic_sequence = [A[i % n][j % n] %

max_locations for i, j = 0 to size(mf)-1].

- Set the hiding location (p) as the starting position of

the chaotic_sequence within the modified cover

file.

- Here's the updated complete algorithm for both

sender and receiver

- Enter the cover file (c) and the secret message (m).

- Convert the cover file (c) and the secret message

(m) into DNA format using a normal formula.

- Generate a value "v" based on which a specific

DNA formula is selected to convert the cover file

(c) into a modified DNA format (cf).

- Generate a value "v1" that determines the quality of

the DNA format to which the secret message (m)

will be converted. Convert the secret message (m)

into a specific DNA format (mf) based on v1.

- Determine the size of the modified secret message

(mf) and the modified cover file (cf).

- Calculate the maximum number of possible hiding

locations by subtracting the size of the modified

secret message from the size of the modified cover

file: max_locations = size(cf) - size(mf).

- Initialize a two-dimensional array (A) of size n x n,

where n is a positive integer larger than the

maximum size of the modified cover file.

- Set the initial values of the array elements in A as

indices of their positions: A[i][j] = i * n + j for i, j =

0 to n-1.

- Iterate the Arnold's cat map for a sufficient number

of times to reach a state of chaos and discard the

initial transient. In each iteration, apply the

following transformations to update the array A:

- A[i][j] = (A[i][j] + A[j][i]) % n for i, j = 0 to n-1.

- Swap the values of A[i][j] and A[j][i].

- Generate a sequence of pseudo-random numbers

using the chaotic array A. Select a subset of size

equal to the size of the modified secret message

(mf) by considering the indices from A.

- chaotic_sequence = [A[i % n][j % n] %

max_locations for i, j = 0 to size(mf)-1].

- Set the hiding location (p) as the starting position of

the chaotic_sequence within the modified cover

file.

- Hide the modified secret message (mf) within the

modified cover file (cf) at the determined hiding

location (p) to obtain a stego-file.

- Send the stego-file to the receiver.

Extraction Algorithm:

 Obtain the stego-file.

 Extract the modified secret message (mf) from the

modified cover file (cf) using the specified hiding

location (p).

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 8, pp 48-57, August-2023

https://doi.org/10.47001/IRJIET/2023.708007

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 53

 Use the value "v" to convert the modified cover file (cf)

back to its original form (c).

 Use the value "v1" to convert the modified secret

message (mf) back to the original message (m).

 Retrieve the original cover file (c) and the original

message (m).

 Convert the cover file (c) and the message (m) into

binary form.

 The receiver now has the secure message (m).

It could be increasing the complexity of the hiding

method by using I more complex chaos method to compute

the hiding location (p), we can consider the Lorenz system.

The Lorenz system is a set of three coupled differential

equations that exhibit chaotic behavior. Here's an updated

algorithm that uses the Lorenz system for computing the

hiding location which can be titled as Chaos-Based Hiding

Location Computation Algorithm using the Lorenz System:

The general algorithm will be as the following:

 Determine the size of the modified secret message (mf)

and the modified coverfile (cf).

 Calculate the maximum number of possible hiding

locations by subtracting the size of the modified secret

message from the size of the modified cover file:

max_locations = size(cf) - size(mf).

 Initialize the parameters of the Lorenz system: σ, ρ, and

β.

 Generate a chaotic sequence of numbers using the

Lorenz system:

 Initialize the state variables: x0, y0, and z0.

 for i = 0 to size(mf)-1:

 Compute the time derivatives using the Lorenz system

equations:

dx/dt = σ * (y - x)

dy/dt = x * (ρ - z) - y

dz/dt = x * y - β * z

 Integrate the equations numerically using a suitable

integration method (e.g., Euler's method or Runge-Kutta

method) to obtain the updated values of x, y, and z.

 chaotic_sequence[i] = floor(|x| * max_locations)

 Update the initial state variables: x0 = x, y0 = y, z0 = z.

 Set the hiding location (p) as the starting position of the

chaotic_sequence within the modified cover file.

 The rest of the embedding and extraction algorithms can

remain the same as described previously.

III. RESULTS AND DISCUSSIONS

To illustrate the proposed method, it needs to show the

steps of ehtalgorithm for both embedding and extracting. To

achieve this both the cover file and the message will be

represented in a binary format. The values for the cover file

(c) and secret message (m) are as follows:

Cover file (c): 11010101 10110010 01101000 Secret message

(m): 01100110 11011011

 Value v: 3

 Value v1: 2

 Array size n: 4

Number of iterations for Arnold's Cat Map: 5 now let's go

through each step of the algorithm and record the results in a

table (1): (Embedding).

Table 1: The steps of the proposed algorithm for (Embedding)

Step Description Result

1 Given cover file (c): 11010101 10110010 01101000 -

2 Given secret message (m): 01100110 11011011 -

3

Convert cover file (c) to DNA format (c_dna) using a

normal formula

c_dna= TCGACGAGCGCTAG TCAGCTAG

4

Convert secret message (m) to DNA format (m_dna) using

a normal formula

m_dna = GACTCGAC TTATGCG

5

Generate value "v" (v = 3) to select a specific DNA

formula

v = 3

6

Generate value "v1" (v1 = 2) to determine the quality of

the DNA format

v1 = 2

7

Determine the size of the modified secret message (mf)

and modified cover file (cf)

size(mf) = 8, size(cf) = 24

8 Initialize a 2D array A of size n x n (n = 4) A = [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]

9 Iterate Arnold's Cat Map for 5 iterations A = [[6, 4, 2, 0], [7, 5, 3, 1], [14, 12, 10, 8], [15, 13, 11, 9]]

Generate a sequence of pseudo-random numbers using

chaotic array A

chaotic_sequence = [6, 4, 2, 0, 7, 5, 3, 1]

11

Set hiding location (p) as the starting position of

chaotic_sequence within a modified cover file

p = 6

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 8, pp 48-57, August-2023

https://doi.org/10.47001/IRJIET/2023.708007

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 54

12

Hide modified secret message (mf) within the modified

cover file (cf) at hiding location (p)

cf=AGTCGACGACTCGACAGCGCTAG TCAGCTAG

13 Send stego-file to the receiver -

Now let's move on to the extraction algorithm: Table (2) provides the intermediate results of the algorithm,

Table 2: The steps of the proposed algorithm for (Extraction)

Step Description Result

1 Obtain stego-file Stego-file: AGTCGACGACTCGACAGCGCTAG TCAGCTAG

2 Extract modified secret message (mf) from modified

cover file (cf) using hiding location (p)

mf = GACTCGAC

3 Use value "v" (v = 3) to convert the modified cover file

(cf) back to its original form (c)

c = AGTCGACG AGCGCTAG TCAGCTAG

4 Use value "v1" (v1 = 2) to convert (mf) back to (m) m = 01100110

5 Retrieve (c) and (m) in binary format (c): 11010101 10110010 01101000(m): 01100110

To evaluate the security of the above example from a

stеganography prospective, we can consider the following

security measures:

Embedding Capacity: The algorithm's security can be assessed

by examining the embedding capacity, which refers to the

amount of secret data that can be hidden within the cover file.

In thе example, the size of the modified secret message (mf)

and modifiеd covеrfilе (cf) arе dеtеrminеd, indicating thе

capacity of thе algorithm to hidе thе sеcrеt mеssagе. Thе

largеr thе еmbеdding capacity, thе morе sеcurе thе algorithm,

as it bеcomеs hardеr for an attackеr to dеtеct thе hiddеn

information.

Imperceptibility: Imperceptibility measures how wеll thе

stеgo-filе blеnds with thе original covеr filе, еnsuring that thе

modifications madе during еmbеdding arе not еasily

noticеablе to human obsеrvеrs. If thе stеgo-filе closеly

rеsеmblеs thе original covеrfilе, it indicatеs a highеr lеvеl of

impеrcеptibility, еnhancing thе sеcurity of thе algorithm.

Robustnеss to Attacks: The sеcurity of thе stеganography

algorithm can bе еvaluatеd by assеssing its robustnеss against

various attacks. Common attacks include visual analysis,

statistical analysis, and known stеganography detection

algorithms. A sеcurе stеganography algorithm should

withstand thеsе attacks and еnsurе that thе hiddеn information

rеmains concеalеd.

Kеy Managеmеnt: Thе sеcurity of thе algorithm also rеliеs on

thе managеmеnt of thе sеcrеt paramеtеrs, such as thе values v

and v1, which arе usеd for thе hiding process. If thеsе

paramеtеrs arе kеpt sеcrеt and propеrly managed, it adds an

еxtra layеr of sеcurity to thе algorithm.

Resistance, to Steganalysis; Steganalysis refers to the

process of identifying information within a stego file. An

effective steganography algorithm should be designed to

withstand steganalysis techniques making it difficult for an

attacker to detect the concealed message.

Evaluation of Security Measures for the Given Example

Using Numerical Assessments;

Embedding Capacity;

 Size of the message (mf); 16 bits

 Size of modified cover file (cf); 48 bits

 Embedding capacity percentage; (mf size / cf size) * 100 =

(16 / 48) * 100 = 33.33%.

 Imperceptibility;

Although the algorithm doesn't explicitly mention

imperceptibility measures, we can assume that any

modifications made during embedding are visually

indistinguishable. Based on this assumption we can rate the

imperceptibility as an 8 out of 10.

 Robustness to Attacks;

The algorithm doesn't specify any measures taken to

enhance robustness against attacks. Therefore, we assign it a

rating of 5 out of 10 in terms of robustness.

 Key Management;

To ensure embedding and extraction the algorithm relies

on keeping the values v and v1 confidential through key

management practices. Considering this approach we rate its

management effectiveness as a 9 out of 10.

Resistance to Steganalysis; The algorithm does not give

information, about how it can withstand steganalysis

techniques. We rate its resistance as average giving it a score

of 6, out of 10.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 8, pp 48-57, August-2023

https://doi.org/10.47001/IRJIET/2023.708007

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 55

Keep in mind that the numerical ratings mentioned above

are subjective and based on the given example. To conduct a

security assessment, we would need to analyze and test the

algorithm extensively against different attacks and

steganalysis techniques.

Original cover file (c):

101010101010101001010101010101011010101010101010

(512 bits)

Stego-file: TAGCTAGCTAGCTAGC

ATAGCTAGCTAGCTAG GCGCGCGCGCGCGCGC

ATAGCTAGCTAGCTAG GCATGCATGCATGCAT

Step 1: Convert the cover file (c) and stego-file to their binary

representations:

Original cover file (c) in binary:

101010101010101001010101010101011010101010101010

Stego-file in binary:

101011010011101100100110101001001010010100100101

Step 2: Calculate the Mean Squared Error (MSE) between the

cover file and stego-file:

MSE = (1/n) * Σ[(c(i) - s(i))^2]

Where n is the total number of bits, c(i) is the i-th bit of the

cover file, and s(i) is the i-th bit of the stego-file.

Using the provided binary representations, we can calculate

the MSE.

MSE = (1/512) * [(1-1)^2 + (0-0)^2 + (1-1)^2 + ... + (0-1)^2 +

(1-0)^2 + (0-1)^2 + ... + (1-1)^2 + (0-0)^2 + (1-1)^2]

= (1/512) * [0 + 0 + 0 + ... + 1 + 1 + 1 + ... + 1 + 0 + 0]

= (1/512) * [3]

= 0.005859375

Step 3: Calculate the maximum possible pixel value (Pmax) in

the binary representation. In this case, Pmax = 1.

Step 4: Calculate the PSNR using the formula:

PSNR = 20 * log10(Pmax / sqrt(MSE))

PSNR = 20 * log10(1 / sqrt(0.005859375))

= 20 * log10(1 / 0.0765304)

= 20 * log10(13.042)

= 20 * 1.115

= 22.3 dB (approximately).

A PSNR of around 22.3 dB suggests that the original

cover file and the stego-file have a pretty high level of

accuracy. Higher PSNR values, in general, indicate greater

quality and less distortion between files. As a result, while a

PSNR value of approximately 22.3 dB indicates good

consistency between the original cover file and the stego-file,

other security measures, attack robustness, and application-

specific requirements must all be considered when evaluating

the overall effectiveness of the steganographic technique.

A greater PSNR in the context of steganography indicates

that the concealed message has been inserted in such a manner

that the perceptual discrepancies between the cover file and

the stego-file are minimized. This might be advantageous in

terms of keeping the visual quality of the cover file while

effectively completing the task.

IV. CONCLUSION

The study investigated the use of a DNA-based

concealment technique in steganography. For embedding and

retrieving the concealed message, the program used a chaos-

based technique based on Arnold's Cat Map. For numerous

circumstances, including varied bit lengths and DNA

representations, the research presented step-by-step

techniques, examples, and computations. Overall, the study

advances our knowledge of and ability to use steganography

that employs DNA-based concealment algorithms and chaotic

techniques. When using such strategies for concealing

sensitive information within cover files, it emphasizes the

value of taking security precautions, quality assessments, and

practical consequences into account. The suggested

steganographic method's resilience, effectiveness, and possible

weaknesses may be investigated in more detail and applied to

real-world circumstances.

REFERENCES

[1] A.T. Erman, A. Dilo, and P. Havinga, "A virtual

infrastructure based on honeycomb tessellation for data

dissemination in multi-sink mobile wireless sensor

networks," EURASIP Journal on Wireless

Communications and Networking, vol. 2012, pp. 1-27,

2012.

[2] A.Kinalis, S. Nikoletseas, D. Patroumpa, and J. Rolim,

"Biased sink mobility with adaptive stop times for low

latency data collection in sensor networks,"

Information fusion, vol. 15, pp. 56-63, 2014.

[3] A.W. Khan, A. H. Abdullah, M. H. Anisi, and J. I.

Bangash, "A comprehensive study of data collection

schemes using mobile sinks in wireless sensor

networks," Sensors, vol. 14, pp. 2510-2548, 2014.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 8, pp 48-57, August-2023

https://doi.org/10.47001/IRJIET/2023.708007

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 56

[4] M. Bishop, "Introduction to computer security," 2005.

[5] B. Nazir and H. Hasbullah, "Mobile sink based routing

protocol (MSRP) for prolonging network lifetime in

clustered wireless sensor network," in 2010

international conference on computer applications and

industrial electronics, 2010, pp. 624-629.

[6] E. B. Hamida and G. Chelius, "Strategies for data

dissemination to mobile sinks in wireless sensor

networks," IEEE Wireless Communications, vol. 15,

pp. 31-37, 2008.

[7] G. C. Kessler, "An overview of cryptography," 2003.

[8] C. Intanagonwiwat, R. Govindan, and D. Estrin,

"Directed diffusion: A scalable and robust

communication paradigm for sensor networks," in

Proceedings of the 6th annual international conference

on Mobile computing and networking, 2000, pp. 56-67.

[9] I.V.S. Manoj, "Cryptography and steganography,"

International Journal of Computer Applications, vol. 1,

pp. 63-68, 2010.

[10] A.Doricchi, C. M. Platnich, A. Gimpel, F. Horn, M.

Earle, G. Lanzavecchia, et al., "Emerging Approaches

to DNA Data Storage: Challenges and Prospects," ACS

nano, vol. 16, pp. 17552-17571, 2022.

[11] L. Ceze, J. Nivala, and K. Strauss, "Molecular digital

data storage using DNA," Nature Reviews Genetics,

vol. 20, pp. 456-466, 2019.

[12] R. R. Sinden, DNA structure and function: Gulf

Professional Publishing, 1994.

[13] S. Marwan, A. Shawish, and K. Nagaty, "DNA-based

cryptographic methods for data hiding in DNA media,"

Biosystems, vol. 150, pp. 110-118, 2016.

[14] J.-S. Taur, H.-Y. Lin, H.-L. Lee, and C.-W. Tao, "Data

hiding in DNA sequences based on table lookup

substitution," International Journal of Innovative

Computing, Information and Control, vol. 8, pp. 6585-

6598, 2012.

[15] A.J. Pinho and D. Pratas, "MFCompress: a

compression tool for FASTA and multi-FASTA data,"

Bioinformatics, vol. 30, pp. 117-118, 2013.

[16] W. Bender, D. Gruhl, N. Morimoto, and A. Lu,

"Techniques for data hiding," IBM systems journal,

vol. 35, pp. 313-336, 1996.

[17] K. Sharma, A. Aggarwal, T. Singhania, D. Gupta, and

A. Khanna, "Hiding data in images using cryptography

and deep neural network," arXiv preprint

arXiv:1912.10413, 2019.

[18] A.A. Abd EL-Latif, B. Abd-El-Atty, and S. E.

Venegas-Andraca, "A novel image steganography

technique based on quantum substitution boxes,"

Optics & Laser Technology, vol. 116, pp. 92-102,

2019.

[19] S. Arora, P. Gupta, V. Goar, M. Kuri, H. K. Channi,

and C. L. Chowdhary, "Key Based Steganography

Using Convolutions," in Advances in Information

Communication Technology and Computing:

Proceedings of AICTC 2022, ed: Springer, 2023, pp.

617-625.

[20] Y. S. Al-Halabi, "A symmetric key based

steganography calculation for anchored information," J

Theor Appl Inf Technol, vol. 98, pp. 103-123, 2020.

[21] O.Evsutin, A. Melman, and R. Meshcheryakov,

"Digital steganography and watermarking for digital

images: A review of current research directions," IEEE

Access, vol. 8, pp. 166589-166611, 2020.

[22] A.Jeltsch, "Beyond Watson and Crick: DNA

methylation and molecular enzymology of DNA

methyltransferases," Chembiochem, vol. 3, pp. 274-

293, 2002.

[23] J. D. Watson and F. H. Crick, "The structure of DNA,"

in Cold Spring Harbor symposia on quantitative

biology, 1953, pp. 123-131.

[24] S. Namasudra, D. Devi, S. Kadry, R. Sundarasekar, and

A. Shanthini, "Towards DNA based data security in the

cloud computing environment," Computer

Communications, vol. 151, pp. 539-547, 2020.

[25] L. Hood and D. Galas, "The digital code of DNA,"

Nature, vol. 421, pp. 444-448, 2003.

[26] A.D. Johnson, "An extended IUPAC nomenclature

code for polymorphic nucleic acids," Bioinformatics,

vol. 26, pp. 1386-1389, 2010.

[27] S. Deorowicz and S. Grabowski, "Compression of

DNA sequence reads in FASTQ format,"

Bioinformatics, vol. 27, pp. 860-862, 2011.

[28] W. R. Pearson, "Using the FASTA program to search

protein and DNA sequence databases," Computer

Analysis of Sequence Data: Part I, pp. 307-331, 1994.

[29] F. Madeira, N. Madhusoodanan, J. Lee, A. R. Tivey,

and R. Lopez, "Using EMBL‐EBI Services via Web

Interface and Programmatically via Web Services,"

Current protocols in bioinformatics, vol. 66, p. e74,

2019.

[30] W. L. P. III, "JavaScript DNA translator: DNA-aligned

protein translations," Biotechniques, vol. 33, pp. 1318-

1320, 2002.

[31] Y. Nakamura, T. Gojobori, and T. Ikemura, "Codon

usage tabulated from international DNA sequence

databases: status for the year 2000," Nucleic acids

research, vol. 28, pp. 292-292, 2000.

[32] R. Dölz, "GCG: translation of DNA sequence,"

Computer Analysis of Sequence Data: Part I, pp. 129-

142, 1994.

[33] H. G. Griffin and A. M. Griffin, "Software update," ed:

Springer, 1998.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 8, pp 48-57, August-2023

https://doi.org/10.47001/IRJIET/2023.708007

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 57

[34] M. S. Rahman, I. Khalil, and X. Yi, "A lossless DNA

data hiding approach for data authenticity in mobile

cloud based healthcare systems," International Journal

of Information Management, vol. 45, pp. 276-288,

2019.

[35] D. A. Benson, M. S. Boguski, D. J. Lipman, J. Ostell,

and B. Ouellette, "GenBank," Nucleic acids research,

vol. 26, p. 1, 1998.

[36] E. W. Sayers, M. Cavanaugh, K. Clark, J. Ostell, K. D.

Pruitt, and I. Karsch-Mizrachi, "GenBank," Nucleic

acids research, vol. 47, pp. D94-D99, 2019.

[37] J. Jurka, P. Klonowski, V. Dagman, and P. Pelton,

"CENSOR—a program for identification and

elimination of repetitive elements from DNA

sequences," Computers & chemistry, vol. 20, pp. 119-

121, 1996.

[38] G. Peterson, "Arnold’s cat map," Math Linear Algebra,

vol. 45, pp. 1-7, 1997.

[39] E. Hariyanto and R. Rahim, "Arnold’s cat map

algorithm in digital image encryption," International

Journal of Science and Research (IJSR), vol. 5, pp.

1363-1365, 2016.

[40] C. E. Souza, D. P. Chaves, and C. Pimentel, "One-

Dimensional Pseudo-Chaotic Sequences Based on the

Discrete Arnold’s Cat Map Over ℤ₃ᵐ," IEEE

Transactions on Circuits and Systems II: Express

Briefs, vol. 68, pp. 491-495, 2020.

AUTHOR’S BIOGRAPHY

Auday H. AL-Wattar, Obtained his

B.Sc. degree in Computer Science

from Mosul University and his M.Sc.

Degree from Technology University-

Baghdad in 2005.He obtained his

Ph.D. from Universiti Putra

Malaysia, Malaysia at Computer

Science and Information Technology

Faculty. He works as a lecturer at

Mosul University (since 2005), in

Computer Science and Mathematics

Faculty - Computer Science

Department. His area of interest

includes Computer Security,

Information Security, Cyber security

programming languages, Data base

management.

Citation of this Article:

Auday H. AL-Wattar, “Data Hiding Using DNA Segments” Published in International Research Journal of Innovations in

Engineering and Technology - IRJIET, Volume 7, Issue 8, pp 48-57, August 2023. Article DOI

https://doi.org/10.47001/IRJIET/2023.708007

https://doi.org/10.47001/IRJIET/2023.708007

