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Abstract - SinLingua, a novel Python library designed to 

advance the domain of Sinhala Natural Language 

Processing (NLP). The primary focus of this work 

encompasses four distinct areas: Singlish to Sinhala 

conversion, Sinhala text data cleaning and pre-processing, 

Sinhala grammar correction, and Sinhala text 

summarization and translation. Each component is 

meticulously crafted to prioritize accuracy, speed, 

customization, and user experience. The Singlish to 

Sinhala converter is engineered to adeptly recognize and 

precisely translate Singlish text into formal Sinhala, 

addressing the paucity of existing tools in this domain. The 

Sinhala text cleaning and pre-processing function employs 

optimized rule-based mechanisms to handle the intricacies 

of the Sinhala language's morphological structures. 

Furthermore, the Sinhala grammar checker serves the 

purpose of transforming informal Sinhala sentences into 

formal ones. Finally, the text summarization and 

translation module proficiently condenses Sinhala articles 

while offering translation into the English language. This 

system provides customization options for summarization 

parameters, such as word count limits and language 

translation. The results of this research demonstrate 

promise, with identified prospects for future 

enhancements, particularly in the realm of handling 

intricate grammatical structures and extending user 

customization features. 

Keywords: Sinhala Natural Language Processing (NLP), 

Singlish to Sinhala conversion, Sinhala text data cleaning and 

preprocessing, Sinhala grammar correction, Sinhala text 

summarization and translation, Python library, Machine 

Learning (ML). 

I. INTRODUCTION 

Language plays a fundamental role in preserving cultural 

heritage and fostering communication, knowledge 

dissemination, and information sharing. However, the 

diversity of languages across the world poses unique 

challenges for natural language processing (NLP). In this 

context, the Sinhala language, with its distinctive linguistic 

characteristics, has garnered attention as a subject of 

significant study. Sinhala, primarily spoken in Sri Lanka, 

presents intriguing complexities that demand specialized tools 

and resources for effective processing. The SinLingua Library, 

a comprehensive toolkit designed to tackle a wide range of 

Sinhala language processing tasks, represents a major 

milestone in this endeavor. This research explores the key 

components of the SinLingua Library, addressing critical 

challenges and gaps in Sinhala NLP like Singlish to Sinhala 

conversion, Sinhala grammar rules mapping, Sinhala text 

preprocessing, and Sinhala text summarization. 

One of the foremost challenges in Sinhala language 

processing is the accurate conversion of Singlish, Romanized 

Sinhala text, into the Sinhala script. The SinLingua Library 

offers multiple approaches for this task, including rule-based 

translation, machine translation using FastText models, hybrid 

translation, and manual translation. These approaches enable 

efficient and contextually accurate conversion of Singlish into 

Sinhala text. Through rule-based methods, it ensures rapid and 

consistent translations. The introduction of machine learning 

models enhances accuracy and contextual depth, while the 

hybrid approach combines rule-based techniques and Large 

Language Models for a holistic solution. Additionally, the 

library empowers users to manually refine translations, 

ensuring linguistic precision tailored to specific dialects or 

preferences. 

The complex grammatical structure of Sinhala presents 

another set of challenges in language processing. While the 

SinLingua Library offers grammar conversion capabilities, 

this research highlights the need for further improvement. The 

library employs a combination of rule-based approaches and 

machine learning, including the Sinhala BER To model, to 

transform informal Sinhala verbal sentences into text 

conforming to Sinhala grammar rules. This allows for the 

refinement of sentence structure, tense, subject-verb 

agreement, and more, ensuring grammatical correctness. 

Moreover, the library offers the capability to predict missing 

words using state-of-the-art language models, further 

enhancing the linguistic accuracy and completeness of the 

text. 

Text preprocessing is a fundamental step in many 

language processing tasks. The SinLingua Library addresses 

this by providing a systematic four-step stemming process 
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through the "SinhalaStemmer" class. This process reduces 

words to their root forms, enhancing accuracy and efficiency 

in downstream text analysis. It navigates the complexities of 

the Sinhala language's agglutinative nature, ensuring precise 

stemming even in the face of irregular inflections and domain-

specific terms. Additionally, the library offers stop word 

handling and tokenization, critical for refining and segmenting 

text for various linguistic tasks. 

Text summarization is a vital area of research, and the 

SinLingua Library explores diverse models and techniques for 

generating accurate and contextually relevant summaries in 

Sinhala. This research evaluates the performance of the TF-

IDF model, BERT model, Longformer, FastBERT, and 

FastLong former in the context of Sinhala text summarization. 

Each model offers a unique balance of accuracy and speed, 

catering to different user requirements. The choice of the 

"best" model depends on the specific use case, with some 

users favoring quick, concise summaries, while others require 

more in-depth and comprehensive insights. 

In conclusion, the SinLingua Library is a valuable asset 

for Sinhala language processing, but it is accompanied by 

several research problems and challenges. This comprehensive 

study highlights these issues, providing a roadmap for future 

advancements in Sinhala NLP. Addressing these challenges 

not only enhances the library's capabilities but also contributes 

to the broader field of Sinhala language processing, benefiting 

researchers, developers, and the Sinhala language community. 

The research presented here is a testament to the commitment 

to preserving and promoting linguistic diversity in the digital 

age. 

II. PROBLEM DEFINITION 

Sri Lankan languages, particularly Sinhala, have unique 

linguistic characteristics that pose intriguing challenges for 

natural language processing (NLP). Among the Sinhala 

language processing tools and resources, the SinLingua 

Library stands as a comprehensive toolkit designed to address 

a wide range of tasks, including text conversion, grammar 

analysis, and summarization. While the library represents a 

significant advancement in the field, there exists a critical 

need for a comprehensive study that investigates various 

research problems and challenges associated with Sinhala 

language processing. This research problem aims to explore 

these challenges, identify gaps, and pave the way for 

advancements in Sinhala NLP. 

One of the foremost challenges in Sinhala language 

processing is the accurate conversion of Singlish, Romanized 

Sinhala text, into the Sinhala script. The SinLingua Library's 

Singlish to Sinhala Text Conversion component provides a 

foundational solution, but its accuracy can be further 

enhanced. Research is required to develop robust algorithms 

that can handle the diverse variations and ambiguities inherent 

in Singlish. Moreover, the library must be equipped to handle 

code-switching, a common phenomenon where Sinhala and 

English words are intermixed in text. 

The complex grammatical structure of Sinhala presents 

yet another set of challenges. While the SinLingua Library 

offers grammar conversion capabilities, there is room for 

improvement. Advanced grammar rules, including verb 

conjugations and complex sentence structures, should be 

addressed to provide more accurate conversions. Incorporating 

contextual analysis to adapt grammar conversion to context-

rich documents is also a crucial research problem. 

Text preprocessing, a fundamental step in many language 

processing tasks, requires focused research. Named Entity 

Recognition (NER) in Sinhala is currently underdeveloped. 

Developing NER models for Sinhala to identify entities like 

names of people, places, and organizations is a pressing need. 

Furthermore, enhancing morphological analysis tools for 

Sinhala is essential for tasks like stemming and lemmatization. 

Lastly, Sinhala text summarization is a promising area for 

research. Existing summarization techniques require further 

exploration, especially in the context of abstractive 

summarization. Generating summaries with better fluency and 

coherence remains a significant challenge. Additionally, 

investigating multilingual summarization, where the source 

text is in Sinhala but the summary can be generated in other 

languages, presents an exciting avenue for research. 

In conclusion, the SinLingua Library is a valuable asset 

for Sinhala language processing, but it is accompanied by 

several research problems and challenges. This comprehensive 

study aims to highlight these issues and encourage further 

research to bridge the gaps in Sinhala NLP. Addressing these 

challenges will not only enhance the library's capabilities but 

also contribute to the broader field of Sinhala language 

processing, benefiting researchers, developers, and the Sinhala 

language community. 

III. LITERATURE SURVEY 

The field of Natural Language Processing (NLP) has 

witnessed significant growth and innovation, encompassing a 

multitude of research studies and tools dedicated to addressing 

the unique linguistic challenges posed by the Sinhala 

language. This literature review delves into these challenges 

and the existing solutions that serve as the foundation for the 

proposed project, which aims to advance Sinhala NLP through 

a comprehensive Python library known as SinLingua. 
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3.1 Singlish to Sinhala Language Conversion 

The primary objective of SinLingua is to bridge a 

noticeable research gap in the realm of Singlish to Sinhala 

language conversion. While natural language processing 

techniques have been explored for various language-related 

tasks, limited research has focused on the intricate task of 

converting informal Singlish to formal written Sinhala. 

Singlish, characterized by its informal nature and a fusion of 

Singlish and English, presents unique translational challenges. 

Traditionally, rule-based approaches have been 

commonly employed in previous studies for Singlish to 

Sinhala conversion. These studies have leveraged Sinhala 

phonetic sets and transliteration rules to facilitate the 

conversion process [1][2][3][4][5]. However, the accuracy of 

these rule-based systems is often hindered by the variations in 

Singlish spelling and Sinhala pronunciation, making it a 

suboptimal solution for complex translations. 

In contrast, machine learning-based approaches have 

demonstrated substantial potential in NLP tasks [3][6]. A rule-

based transliteration technique for Singlish to Sinhala has been 

explored, achieving an accuracy of 93.2% by employing a 

dictionary-based approach and rules for complex phrases [7]. 

The proposed project acknowledges the limitations of rule-

based approaches and aims to leverage machine learning 

techniques to develop a Python library that can accurately 

convert Singlish to Sinhala, effectively addressing the 

challenges posed by variations and nuances present in the 

Singlish language [8]. 

3.2 Sinhala Grammar Rule Mapping 

Sinhala language processing has faced constraints, with 

limited resources and tools for efficient conversion of spoken 

Sinhala to written text. Existing tools provide machine 

learning-based solutions but often lack proper grammar rules 

for accurate Sinhala language conversion. This absence of 

grammar rules results in reduced accuracy and efficiency. 

Additionally, these tools lack the real-time performance 

required for various applications. 

The proposed SinLingua library aims to bridge this gap 

by implementing a machine learning-based approach that 

provides accurate Sinhala language conversion, with proper 

grammar rules, offering optimized real-time performance. It 

addresses the research gap by combining rule-based and 

machine learning-based methods, allowing accurate stem word 

generation and enhancing adaptability to different accents and 

dialects [8]. 

 

3.3 Sinhala Text Preprocessing 

While several tools and libraries for Sinhala text 

processing exist, there are significant limitations that hinder 

their efficiency in cleaning and preprocessing Sinhala text 

data. Rule-based approaches are commonly employed in 

existing tools, but these have limitations in handling variations 

and nuances of the Sinhala language, and most do not support 

different variations of Sinhala text [9][10][11]. 

The proposed SinLingua library introduces a hybrid 

approach that combines rule-based and machine learning-

based methods to handle complex Sinhala text data accurately 

and efficiently [11]. It aims to fill the research gap by 

supporting various Sinhala language variations, enabling 

integration with other systems, and offering support for large 

text datasets. Additionally, the library focuses on user 

interface design, providing a user-friendly experience. 

3.4 Sinhala Text Summarization 

The realm of Sinhala text summarization has seen prior 

research efforts that primarily focused on extractive 

summarization methods [6]. These studies concentrated on 

specific domains, such as news articles, and employed 

methods like text rank algorithms for extractive 

summarization. These works contributed to the understanding 

of Sinhala text summarization but often had limitations, 

including a lack of customization options for summarization 

length and coverage for various content types. 

The proposed SinLingua library endeavors to address 

these limitations by introducing a hybrid summarization 

model, customizable summarization length, and translation 

capabilities into the English language. These features are 

expected to enhance the utility of Sinhala text summarization 

and make it accessible to a wider audience, regardless of their 

language proficiency. 

In conclusion, the existing research and tools in Sinhala 

NLP have paved the way for innovative solutions like 

SinLingua [11][12]. This comprehensive Python library 

combines rule-based and machine learning-based approaches 

to tackle the challenges posed by Singlish to Sinhala 

conversion, Sinhala language conversion, text preprocessing, 

and text summarization. By addressing these research gaps, 

the proposed library aims to contribute to the growth of 

Sinhala NLP, benefiting various industries and enabling more 

efficient and accurate language processing. 
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IV. METHODOLOGY 

The methodology encompasses a comprehensive 

approach to develop the SinLingua Python library, addressing 

various facets of Sinhala language processing. This 

methodology is structured to ensure the effective conversion 

of Singlish to Sinhala, efficient grammar rule mapping, 

sophisticated text preprocessing, and customizable text 

summarization. 

Given below is the high-level architecture diagram of 

SinLingua library. 

 

Figure 1: High-level architecture diagram 

4.1 Singlish to Sinhala Language Conversion 

  Rule-Based Translation: The Rule-Based Translation 

approach offered by the SinLingua Singlish to Sinhala 

conversion is a method that relies on predefined linguistic rules 

to convert Singlish text into Sinhala. This deterministic 

approach ensures efficient, consistent, and rapid translations. 

Users can utilize this method by employing the 

―RuleBasedTransliterator‖ class. Once the class is imported 

and instantiated, the user can simply input the desired Singlish 

text, invoking the ―transliterator‖ method to obtain the Sinhala 

translation. This approach is ideal for those seeking quick and 

uniform translations. First the library separates Singlish text 

into logical groups and then it maps corresponding Sinhala 

terms through an algorithm from a pre-defined python 

dictionary, which is having the corresponding Singlish term 

and its Sinhala term as the key-value pairs for each vowel, 

consonant and dependent vowel. As an example; ―a‖: ―අ‖, 

―aa‖: ―ා ‖, and ―sh‖: ―඾‖.Finally, it gets 

―ඔය ටදැන්ක ොක ොමද‖ for input ―oyaata dhaen kohomadha‖. 

 

Figure 2: Part of the rule-based algorithm 

Machine Translation via the FastText Model: Machine 

Translation using the FastText model integrates word 

embeddings [13], specifically FastText‘s pre-trained Sinhala 

word vectors, to heighten translation accuracy. Word 

embeddings, which map words to a semantic space based on 

context, allow for richer and contextually apt translations. The 

process starts with a rule-based translation of Singlish text to 

Sinhala. This initial translation is then refined using FastText‘s 

vectors to suggest semantically similar Sinhala words. This 

dual approach ensures the translated text captures both the 

direct meaning and the nuanced context of the original text. To 

facilitate this, the library includes the ―transliterator‖ function 

of ―MachineTransliterator‖ class, enabling users to harness 

this combined power of rule-based translation and semantic 

word embeddings seamlessly. 

 

Figure 3: Function for get best suggestions for a particular word through 

FastText model 

Hybrid Translation: The SinLingua Singlish Hybrid 

Translation method synergizes rule-based and Large Language 

Models (LLMs) to yield precise and context-sensitive Sinhala 

translations. Here it used gpt-3.5-turbo model from OpenAI as 

the LLM [14]. At its core lies the ―HybridTransliterator‖ class, 

which facilitates this fusion. Users can employ this class for 

transliteration tasks. For refining translations, two utilities are 

offered: The Machine Mask Translation, which identifies and 

masks misspelled Sinhala words, and the Machine Suggest 

Translation, which provides replacement suggestions for 

masked words. This latter utility can be applied using two 

distinct approaches: one involves manual word masking, while 

the other harnesses automated machine masking. User should 

provide OpenAI API key and Organization ID as the 

parameters for the class HybridTransliterator. Additionally, 
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users can customize default prompts via optional parameters 

other than the pre-defined prompts which library utilizes to get 

responses through API for a more tailored experience. 

 

Figure 4: Function to process prompts through gpt-3.5-turbo model 

Manual Translation: The SinLingua Singlish Manual 

Translation method allows for hands-on, context-specific 

adjustments to translations using the ―ManualTransliterator‖ 

class. Initially, users map each word in the Sinhala text to a 

unique coordinate with the ―generate_coordinates‖ method, 

which can be exported to a CSV for visualization. Next, 

targeted cells within this coordinate grid can be altered using 

the ―replace_cells‖ method, with an option to undo changes if 

needed. The framework also offers manual masking, where 

specific words can be temporarily obscured and later refined; 

this is especially useful in tandem with the Hybrid 

Translation‘s ―machine_suggest‖ method. Finally, the 

―reconstruct_text‖ method reverts the modified dataframe 

back into a textual format, ensuring that translations align with 

a user‘s contextual intent. 

4.2 Sinhala Grammar Rule Mapping 

The Sinhala Verbal Text to Written Text Conversion 

module is designed to transform informal Sinhala verbal 

sentences into written text that conforms to Sinhala grammar 

rules. The conversion process is achieved through a 

combination of rule-based and machine learning approaches. 

Rule-Based Approach: The initial step involves 

employing a set of predefined Sinhala grammar rules to the 

given verbal sentence. These rules encompass various 

grammatical aspects such as tense, subject-verb agreement, 

and pluralization. Each rule is represented by a function within 

the ―GrammarMain‖ class. For instance, based on the 

subject‘s tense and the corresponding verb, the module applies 

the appropriate rule. For example, sentences starting with 

―මම‖ or ―ම ‖ in present tense should end with ―මි‖. Similarly, 

sentences starting with ―අප‖ or ―අපි‖ in present tense should 

conclude with ―මු‖. The module maps different subject 

pronouns and tenses to the correct verb endings, ensuring 

grammatical correctness. 

Machine Learning Approach: To enhance accuracy, the 

module leverages the SinhalaBERTo model, a Sinhala BERT-

based language model. Integrated into the LLMConfig class, 

this model predicts suitable written text for the given verbal 

sentences. 

By inputting the verbal sentence into SinhalaBERTo, the 

module generates contextually relevant written output. This 

output serves as an alternative or validation for the rule-based 

conversion. 

 

Figure 5: Sinhala grammar rules process flowchart 

4.3 Sinhala Text Preprocessing 

The ―SinhalaStemmer‖ class, an integral component of 

the SinLingua library, is devised to elevate the accuracy and 

efficiency of Sinhala text preprocessing through a systematic 

four-step stemming process. Each procedure is meticulously 

crafted to address different aspects of stemming intricacies 

within the Sinhala language. 

Stem Dictionary Lookup (Step One): This initial 

procedure harnesses a substantial corpus called the stem 

dictionary, which pairs Sinhala words with their 

corresponding stemmed forms. The objective is to determine 

potential stems for input words by conducting a 

straightforward comparison. Within the method ―step_one‖, 

the program queries the stem dictionary for a match with the 

provided input word. Upon finding a match, the method 

directly substitutes the input word with its corresponding 

stemmed form. 

Suffix Removal (Step Two): The second procedure 

focuses on the identification and removal of common suffixes 

inherent to the Sinhala language. The method ―step_two‖ 
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systematically examines the input word for the presence of 

recognized suffixes stored in the suffix list. By iterating 

through these suffixes and checking for their occurrence at the 

end of the input word, the algorithm identifies and eliminates 

suffixes that signal grammatical variations or tense changes. 

Inner Suffix Handling (Step Three): Complex word 

formations in Sinhala can result in nested suffixes, presenting 

a challenge for accurate stemming. The third procedure, 

―step_three‖ is designed to manage this intricacy. It extends 

beyond the basic suffix removal by addressing inner suffixes 

that might exist within a word. By examining both the suffixes 

and their preceding characters, the algorithm accurately 

identifies and removes inner suffixes. If an inner suffix 

removal alters dependent vowels, the algorithm ensures proper 

handling to maintain word integrity. 

Dependent Vowel Suffix Removal (Step Four): Sinhala 

suffixes that commence with dependent vowels are distinctive 

and demand specialized treatment. The fourth procedure, 

―step_four‖ specifically targets these cases. The algorithm 

identifies suffixes with dependent vowel prefixes and 

eliminates them, contributing to cohesive stemming while 

preserving the core meaning of words. The step-by-step 

execution of this process aligns with the algorithm‘s 

meticulous approach, ensuring the comprehensive handling of 

diverse suffix patterns. 

The ―SinhalaStemmer‖ class encapsulates the complete 

stemming process, with the overarching method stemmer 

accepting both individual words and lists of words. This 

method orchestrates the application of all four procedures, 

accommodating variations in input type and word 

characteristics. For individual words, the method passes them 

through each procedure sequentially, producing the final 

stemmed form. In the case of word lists, the method performs 

the same procedure sequence for each word, generating a list 

of stemmed outputs. 

Stop word handling is a fundamental step in the Sinhala 

text preprocessing pipeline. It involves the identification and 

removal of stop words – frequently occurring but contextually 

uninformative words – from the text. These words, such as 

―ස ‖ (and), ―සමග‖ (with), and ―ක඼ස‖ (like), are part of a 

predefined list of stop words. The primary goal of this process 

is to eliminate words that add minimal semantic value to the 

text while focusing on the meaningful content. 

Tokenization is a foundational process in Sinhala text 

preprocessing that involves breaking down a continuous 

stream of text into individual units known as tokens. These 

tokens typically correspond to words or sub-words, and they 

serve as the building blocks for subsequent linguistic analysis 

and processing. 

 

Figure 6: Sinhala text preprocessing process flowchart 

4.4 Sinhala Text Summarization 

In the comprehensive study of text summarization 

methodologies, a diverse array of models was evaluated, 

spanning both traditional and cutting-edge techniques. This 

analysis encompassed the TF-IDF model, a well-established 

statistical method that gauges a term‘s significance through its 

frequency. Additionally, the BERT (Bidirectional Encoder 

Representations from Transformers) model, a deep learning-

based approach, was included due to its prowess in 

understanding bidirectional textual context. The Longformer, 

a modification of the transformer architecture, stands out for 

its capability to process extensive texts via a specialized global 

attention mechanism. The FastBERT model, a more efficient 

iteration of BERT, offers a harmonious blend of performance 

and speed. Lastly, The Fast Longformer combines the 

swiftness of DistilBERT with the depth of Longformer, 

offering a balanced hybrid solution. To optimize the input 

textual data, which encompassed articles, blogs, research 

papers, and narratives, several preprocessing steps were 

undertaken. This included tokenization, removal of stopwords, 

and sentence segmentation, all executed with an emphasis on 

maintaining linguistic integrity. 

TF-IDF Model: Statistical measure evaluating word 

importance in a document relative to a corpus. To generate 

summary, compute term frequency (TF) for each word in the 

document. Then calculate inverse document frequency (IDF) 

for each term against the corpus. Assign a weight to each 

sentence based on the aggregate TF-IDF scores of its 

constituent terms. Finally Select the top-ranking sentences to 

form the summary. 

BERT Model: Deep learning model that analyzes text 

bidirectionally to understand word context. To generate 

summary, tokenize the input document. Convert the tokens 

into embeddings using BERT‘s pre-trained weights. Process 

the embeddings through an encoder-decoder neural network 

structure. Predict the inclusion probability of each sentence in 

the summary. Select the top-ranked sentences based on their 

predicted probabilities. 
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Longformer Model: An extension of BERT designed to 

handle longer documents using both local and globalattention 

mechanisms. To generate summary, tokenize the input 

document. Convert the tokens into embeddings similarly to 

BERT. Process the entire document without truncation using 

Longformer‘s attention mechanisms. Predict the importance of 

each sentence based on the model‘s outputs. Aggregate the 

most relevant sentences to form the summary. 

FastBERT Model: A lighter and faster version of BERT 

achieved by training a smaller student model to mimic a 

larger, pre-trained teacher model. To generate summary, 

tokenize the input document. Convert tokens into embeddings. 

Evaluate the significance of each sentence using the 

streamlined architecture of DistilBERT. Compile the top-

ranking sentences to produce the summary. 

Fast Longformer (Hybrid Model): A hybrid model that 

combines the speed of DistilBERT with the long-document 

handling capability of Longformer. To generate summary, 

tokenize the input document. Convert tokens into embeddings. 

Evaluate the relevance of each sentence using a combination 

of distilled architecture and global attention mechanisms. 

Concatenate the most pertinent sentences to produce the 

summary. 

V. RESULT AND DISCUSSION 

The central outcome of this project is the publication of 

the SinLingua library on PyPI, the Python package repository. 

This library simplifies the process of Sinhala language 

processing and can be conveniently installed using the 'pip' 

command. 

 

Figure 7: PyPI project page for SinLingua library 

The functional results obtained using the SinLingua 

Python library can be categorized into four fundamental 

components, each of which is designed to enhance and 

streamline various aspects of Sinhala language processing. 

5.1 Singlish to Sinhala Conversion 

After importing the SinLingua library, users are required 

to import specific classes developed within the library based 

on their intended usage for Singlish to Sinhala language 

conversion. Below are the classes that need to be imported: 

 

Figure 8: Importing required classes for Singlish to Sinhala conversion in 

SinLingua library 

To facilitate Singlish to Sinhala conversion using a rule-

based approach, the SinLingua library provides a dedicated 

class called "RuleBasedTransliterator." This class serves as the 

core component for implementing the rule-based conversion 

method. Users can employ this class as outlined below: 

 

Figure 9: Example of rule-based translator 

Here we initialize a variable named singlish_text and 

assign it the value "oyaata kohomadha", which translates to 

"ඔය ටක ොක ොමද" in Sinhala by using. But when using the 

rule-based approach, there is a limitation related to the need 

for an exact mapping between Singlish and Sinhala. The rule-

based approach relies on predefined rules and mappings to 

perform the conversion. 

However, the introduction of the Machine Translation 

technique, anchored on the FastText Model, addressed this 

issue. Upon assessing various translations, it was discernible 

that by leveraging Sinhala word vectors, the translations 

weren‘t just accurate but were infused with contextual depth 

and linguistic nuances. This makes the translation more 

natural and relatable to native Sinhala speakers.  

The machine learning (ML) approach, while offering 

notable advantages, does come with certain disadvantages. 

One significant drawback is its time-consuming nature. 

Additionally, ML models, such as those relying on FastText 

vectors, necessitate that the words in the input text exist within 

the pre-trained vector space to yield correct results. This 

limitation can lead to inaccuracies when dealing with out-of-

vocabulary terms or domain-specific jargon. To mitigate these 

shortcomings and ensure a more comprehensive and adaptable 

solution, the SinLingua library adopts a hybrid approach that 

combines rule-based methods for handling known expressions 

and machine learning techniques like Large Language Models 

(LLMs) for broader coverage and adaptability. 
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Figure 10: Example of hybrid translator 

An illustrative example of this is the Singlish phrase 

"oyata den kohomada." While conventional translation tools 

often falter, yielding outputs like (ඔයටකෙන්ක ොක ොමෙ), the 

SinLingua system excels, providing a more authentic 

translation as (ඔය ටදැන්ක ොක ොමද, oyaata dhaen 

kohomadha). Notably, what distinguishes the system is its 

optional manual translation feature, underscoring the 

indispensable role of human intervention in translations. By 

allowing users to refine translations, it not only ensures the 

highest level of accuracy but also empowers users to tailor 

translations to specific dialects or regional preferences.  

5.2 Sinhala Grammar Rule Mapping 

Here are the Sinhala grammar rules defined within the scope 

for mapping purposes. 

 

Figure 1: List of grammar rules 

These rules have been implemented as distinct functions 

within the SinLingua Library. The purpose of these functions 

is to establish the mapping of Sinhala grammar rules with a 

given sentence. 

 Example 1: To demonstrate the functionality of the 

'mapper()' function within the SinLingua library, 

consider the input sentence: "අපි ෑම ෑල ." Upon 

applying this sentence to the 'mapper()' function, it 

produces the following output: 

"අපි ෑම ෑකලමු."―අපි ෑම ෑල ‖ 

 Example 2: Let's illustrate the use of the 'mapper()' 

function within the SinLingua library with the input 

sentence: "ඔහුඉත ආදරකයන්කදම පියන්නමදිනල ." When 

processed by the 'mapper()' function, it yields the 

following output: "ඔහුඉත ආදරකයන්කදම පියන්නමදියි." 

Let's examine these two examples at the codebase level, 

where user will simply utilize the SinLingua Library to obtain 

the grammatically corrected output. This is the class that needs 

to be imported: ‗GrammarMain‘. 

 

Figure 2: Import GrammarMain class 

Here's how to obtain the grammatically corrected output 

using the given two examples. 

 Example 1: 

 

Figure 3: User calls the mapper() function to get output 1 

 Example 2: 

 

Figure 4: User calls the mapper() function to get output 2 

Let's delve into the step-by-step procedure of the 

provided code. To begin, we initiate an instance of the 

'GrammarMain' class, an integral component of the SinLingua 

Library. Next, we define the original informal Sinhala 

sentence and store it in a variable named 'sentence.' Following 

this, we execute the grammar correction process by invoking 

the 'mapper' method of the 'GrammarMain' instance, utilizing 

the 'sentence' variable as an argument. Finally, we retrieve and 

print the corrected sentence, representing the successful 

outcome of the grammar correction operation. This sequence 

of actions ensures the accurate refinement of Sinhala 

sentences for enhanced linguistic precision. 

There is another feature to predict missing word using 

SinLingua Library. Just need to set <mask> for the word you 



International Research Journal of Innovations in Engineering and Technology (IRJIET) 

ISSN (online): 2581-3048 

Volume 7, Issue 10, pp 97-107, October-2023 

https://doi.org/10.47001/IRJIET/2023.710013  

© 2023-2017 IRJIET All Rights Reserved                     www.irjiet.com                                        105                                                                    
 

want to predict. This is how the library provides output with 

up to five appropriate suggestions. 

 

Figure 5: Predict five best suggestions from berto_predict_top() 

Let's walk through the sequential steps within the 

provided code. Firstly, we initiate an instance of the 

'LLMConfig' class, a fundamental component integrated into 

the SinLingua Library. Subsequently, we craft an informal 

Sinhala sentence and incorporate a '<mask>' token, facilitating 

word prediction. Employing the language model, we utilize 

the expression 'obj.berto_predict_top(sentence=sentence)' to 

predict the top word suggestions for the masked word 

position. Finally, we demonstrate the enhanced capabilities of 

the SinLingua Library by printing up to five relevant word 

suggestions. This process underscores the library's role in 

elevating Sinhala language comprehension and processing, 

further contributing to its proficiency. 

5.3 Sinhala Text Preprocessing  

In the realm of Sinhala data processing, Stemming is a 

critical process within language preprocessing. Its primary 

objective is the reduction of words to their fundamental or root 

forms. In the context of Sinhala, stemming presents unique 

challenges owing to the language's agglutinative nature, where 

affixes are added to words for conveying diverse meanings. 

This section delves into the stemming component of the 

Sinhala text preprocessing library and the methodologies it 

employs to enhance accuracy. 

The stemming component yielded promising results in 

handling regular inflections and common word forms. It 

consistently and accurately reduced words to their base forms, 

thereby enhancing downstream text analysis. Nevertheless, it's 

imperative to recognize the challenges posed by irregular 

inflections and domain-specific terms that may fall outside the 

scope of the stem dictionary. In such cases, incorrect 

stemming or the preservation of original words could occur. 

Given below is the way of use Sinhala stemming 

functionality of SinLingua. First user should initialize 

SinhalaStemmer from SinLingua‘s preprocessor module. 

 

Figure 6: Import preprocessor module classes from SinLingua library 

The following code segment demonstrates the utilization 

of the ‗SinhalaStemmer‘ class within the SinLingua library. It 

serves the purpose of stemming, which is the process of 

reducing words to their root or base form in the context of 

Sinhala text preprocessing. The outcome is a more refined and 

structured representation of the original text, contributing to 

enhanced accuracy and efficiency in subsequent text analysis 

and language processing tasks. 

 

Figure 7: Example for use stemmer() function 

Next, preprocessor module focuses on stopword removal. 

It employs the ‗StopWordRemover‘ class to eliminate 

common stopwords from a given paragraph. This process is 

critical for refining the input text, as stopwords often carry 

little semantic value and can be a hindrance in various 

language processing tasks. The outcome, 'remaining_words,' 

represents the paragraph with stopwords removed, enhancing 

the quality of the text for downstream analysis. 

 

Figure 8: Example for use remove_stop_words() function 

Sinhala tokenization is showcased using the 

‗SinhalaTokenizer‘ class. Tokenization is a fundamental step 

in text preprocessing that involves splitting a paragraph into 

individual words or tokens. This process is essential for tasks 

like language understanding, sentiment analysis, and topic 

modeling. The 'tokenz' variable contains the result of the 

tokenization process, which allows for more granular analysis 

and manipulation of the text. 

 

Figure 9:Example for use tokenize() function 

5.4 Sinhala Text Summarization 

In testing the library‘s capacity to summarize Sinhala 

articles, it used a variety of Sinhala articles covering diverse 

topics such as politics, economy, sports, and culture. The 
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library demonstrated its efficiency by extracting key 

information and creating well-structured summaries. In the 

quest to find the most optimal model for text summarization, 

our results illuminated a fascinating interplay between 

accuracy, speed, and user preferences. 

5.4.1 TF-IDF Model 

As anticipated, the TF-IDF model stood as a robust 

baseline, given its simplicity and efficiency. It quickly 

processed texts, highlighting key terms based on their 

frequency. However, in terms of qualitative output, the 

summaries often missed nuanced context or sentiment of the 

original content, which is a limitation inherent to its statistical 

nature. While it sufficed for shorter texts or articles with a 

direct informational tone, for longer and context-rich content, 

it somewhat faltered. 

5.4.2 BERT Model 

The BERT model showcased its prowess in 

understanding context. Summaries derived were coherent and 

more aligned with the underlying sentiments of the original 

texts. Nevertheless, it demanded considerable computational 

resources and time, which made it slightly less appealing for 

real-time applications. Its bi-directional context 

comprehension, while powerful, was computationally 

expensive. 

5.4.3 Longformer 

Longformer, with its global attention mechanism, 

excelled in processing extensive texts. It provided 

comprehensive summaries for long documents, and its 

capability to attend to broader contexts proved beneficial. Yet, 

it bore the brunt of being one of the slower models due to its 

intricate architecture. 

5.4.4 DistilBERT (FastBERT)  

DistilBERT struck a fascinating balance. While it didn‘t 

match BERT‘s depth in context understanding entirely, it 

compensated by being significantly faster. For applications 

where speed was a priority without substantial compromise on 

quality, DistilBERT emerged as a strong contender. 

5.4.5 Fast Longformer  

The hybrid approach attempted to merge the depth of 

Longformer with the speed of DistilBERT. Results displayed 

its competence in summarizing longer texts faster than the 

Longformer but at the slight expense of depth. It seemed to be 

a worthy compromise for applications needing summaries of 

large texts within shorter timeframes. 

Upon presenting the summarized outputs to a diverse 

group of participants, the feedback was enlightening. Users 

who required quick, concise summaries for decision-making 

or information extraction leaned towards DistilBERT. In 

contrast, researchers and professionals, who needed in-depth 

summaries, favored the Longformer and BERT.  

TF-IDF found its supporters among users who wanted 

lightweight applications without the complexities of deep 

learning. 

In conclusion, while each model had its own strengths 

and weaknesses, the ―best‖ model was contingent upon 

specific user requirements and application scenarios. Future 

work might look into refining these models further, perhaps 

integrating their strengths or exploring more hybrid 

approaches to achieve the elusive balance of speed, accuracy, 

and depth in text summarization. 
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