
International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 10, pp 97-107, October-2023

https://doi.org/10.47001/IRJIET/2023.710013

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 97

SinLingua: Python Library for Sinhala Data Processing
1
Supun Sameera,

2
Sandaruwini Galappaththi,

3
Sarada Wijesinghe,

4
Binura Yasodya,

5
Anjalie Gamage,

6
Bhagyanie Chathurika

1,2,3,4,5,6
Department of Information Technology, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka

Authors E-mail:
1
supunsameeran@gmail.com,

2
sandaruwinigalappaththi@gmail.com,

3
saradawijesinghe@gmail.com,

4
binurayasodya24@gmail.com,

5
angalie.g@sliit.lk,

6
bhagyanie.c@sliit.lk

Abstract - SinLingua, a novel Python library designed to

advance the domain of Sinhala Natural Language

Processing (NLP). The primary focus of this work

encompasses four distinct areas: Singlish to Sinhala

conversion, Sinhala text data cleaning and pre-processing,

Sinhala grammar correction, and Sinhala text

summarization and translation. Each component is

meticulously crafted to prioritize accuracy, speed,

customization, and user experience. The Singlish to

Sinhala converter is engineered to adeptly recognize and

precisely translate Singlish text into formal Sinhala,

addressing the paucity of existing tools in this domain. The

Sinhala text cleaning and pre-processing function employs

optimized rule-based mechanisms to handle the intricacies

of the Sinhala language's morphological structures.

Furthermore, the Sinhala grammar checker serves the

purpose of transforming informal Sinhala sentences into

formal ones. Finally, the text summarization and

translation module proficiently condenses Sinhala articles

while offering translation into the English language. This

system provides customization options for summarization

parameters, such as word count limits and language

translation. The results of this research demonstrate

promise, with identified prospects for future

enhancements, particularly in the realm of handling

intricate grammatical structures and extending user

customization features.

Keywords: Sinhala Natural Language Processing (NLP),

Singlish to Sinhala conversion, Sinhala text data cleaning and

preprocessing, Sinhala grammar correction, Sinhala text

summarization and translation, Python library, Machine

Learning (ML).

I. INTRODUCTION

Language plays a fundamental role in preserving cultural

heritage and fostering communication, knowledge

dissemination, and information sharing. However, the

diversity of languages across the world poses unique

challenges for natural language processing (NLP). In this

context, the Sinhala language, with its distinctive linguistic

characteristics, has garnered attention as a subject of

significant study. Sinhala, primarily spoken in Sri Lanka,

presents intriguing complexities that demand specialized tools

and resources for effective processing. The SinLingua Library,

a comprehensive toolkit designed to tackle a wide range of

Sinhala language processing tasks, represents a major

milestone in this endeavor. This research explores the key

components of the SinLingua Library, addressing critical

challenges and gaps in Sinhala NLP like Singlish to Sinhala

conversion, Sinhala grammar rules mapping, Sinhala text

preprocessing, and Sinhala text summarization.

One of the foremost challenges in Sinhala language

processing is the accurate conversion of Singlish, Romanized

Sinhala text, into the Sinhala script. The SinLingua Library

offers multiple approaches for this task, including rule-based

translation, machine translation using FastText models, hybrid

translation, and manual translation. These approaches enable

efficient and contextually accurate conversion of Singlish into

Sinhala text. Through rule-based methods, it ensures rapid and

consistent translations. The introduction of machine learning

models enhances accuracy and contextual depth, while the

hybrid approach combines rule-based techniques and Large

Language Models for a holistic solution. Additionally, the

library empowers users to manually refine translations,

ensuring linguistic precision tailored to specific dialects or

preferences.

The complex grammatical structure of Sinhala presents

another set of challenges in language processing. While the

SinLingua Library offers grammar conversion capabilities,

this research highlights the need for further improvement. The

library employs a combination of rule-based approaches and

machine learning, including the Sinhala BER To model, to

transform informal Sinhala verbal sentences into text

conforming to Sinhala grammar rules. This allows for the

refinement of sentence structure, tense, subject-verb

agreement, and more, ensuring grammatical correctness.

Moreover, the library offers the capability to predict missing

words using state-of-the-art language models, further

enhancing the linguistic accuracy and completeness of the

text.

Text preprocessing is a fundamental step in many

language processing tasks. The SinLingua Library addresses

this by providing a systematic four-step stemming process

mailto:1supunsameeran@gmail.com
mailto:2sandaruwinigalappaththi@gmail.com
mailto:3saradawijesinghe@gmail.com
mailto:4binurayasodya24@gmail.com
mailto:5angalie.g@sliit.lk
mailto:6bhagyanie.c@sliit.lk

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 10, pp 97-107, October-2023

https://doi.org/10.47001/IRJIET/2023.710013

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 98

through the "SinhalaStemmer" class. This process reduces

words to their root forms, enhancing accuracy and efficiency

in downstream text analysis. It navigates the complexities of

the Sinhala language's agglutinative nature, ensuring precise

stemming even in the face of irregular inflections and domain-

specific terms. Additionally, the library offers stop word

handling and tokenization, critical for refining and segmenting

text for various linguistic tasks.

Text summarization is a vital area of research, and the

SinLingua Library explores diverse models and techniques for

generating accurate and contextually relevant summaries in

Sinhala. This research evaluates the performance of the TF-

IDF model, BERT model, Longformer, FastBERT, and

FastLong former in the context of Sinhala text summarization.

Each model offers a unique balance of accuracy and speed,

catering to different user requirements. The choice of the

"best" model depends on the specific use case, with some

users favoring quick, concise summaries, while others require

more in-depth and comprehensive insights.

In conclusion, the SinLingua Library is a valuable asset

for Sinhala language processing, but it is accompanied by

several research problems and challenges. This comprehensive

study highlights these issues, providing a roadmap for future

advancements in Sinhala NLP. Addressing these challenges

not only enhances the library's capabilities but also contributes

to the broader field of Sinhala language processing, benefiting

researchers, developers, and the Sinhala language community.

The research presented here is a testament to the commitment

to preserving and promoting linguistic diversity in the digital

age.

II. PROBLEM DEFINITION

Sri Lankan languages, particularly Sinhala, have unique

linguistic characteristics that pose intriguing challenges for

natural language processing (NLP). Among the Sinhala

language processing tools and resources, the SinLingua

Library stands as a comprehensive toolkit designed to address

a wide range of tasks, including text conversion, grammar

analysis, and summarization. While the library represents a

significant advancement in the field, there exists a critical

need for a comprehensive study that investigates various

research problems and challenges associated with Sinhala

language processing. This research problem aims to explore

these challenges, identify gaps, and pave the way for

advancements in Sinhala NLP.

One of the foremost challenges in Sinhala language

processing is the accurate conversion of Singlish, Romanized

Sinhala text, into the Sinhala script. The SinLingua Library's

Singlish to Sinhala Text Conversion component provides a

foundational solution, but its accuracy can be further

enhanced. Research is required to develop robust algorithms

that can handle the diverse variations and ambiguities inherent

in Singlish. Moreover, the library must be equipped to handle

code-switching, a common phenomenon where Sinhala and

English words are intermixed in text.

The complex grammatical structure of Sinhala presents

yet another set of challenges. While the SinLingua Library

offers grammar conversion capabilities, there is room for

improvement. Advanced grammar rules, including verb

conjugations and complex sentence structures, should be

addressed to provide more accurate conversions. Incorporating

contextual analysis to adapt grammar conversion to context-

rich documents is also a crucial research problem.

Text preprocessing, a fundamental step in many language

processing tasks, requires focused research. Named Entity

Recognition (NER) in Sinhala is currently underdeveloped.

Developing NER models for Sinhala to identify entities like

names of people, places, and organizations is a pressing need.

Furthermore, enhancing morphological analysis tools for

Sinhala is essential for tasks like stemming and lemmatization.

Lastly, Sinhala text summarization is a promising area for

research. Existing summarization techniques require further

exploration, especially in the context of abstractive

summarization. Generating summaries with better fluency and

coherence remains a significant challenge. Additionally,

investigating multilingual summarization, where the source

text is in Sinhala but the summary can be generated in other

languages, presents an exciting avenue for research.

In conclusion, the SinLingua Library is a valuable asset

for Sinhala language processing, but it is accompanied by

several research problems and challenges. This comprehensive

study aims to highlight these issues and encourage further

research to bridge the gaps in Sinhala NLP. Addressing these

challenges will not only enhance the library's capabilities but

also contribute to the broader field of Sinhala language

processing, benefiting researchers, developers, and the Sinhala

language community.

III. LITERATURE SURVEY

The field of Natural Language Processing (NLP) has

witnessed significant growth and innovation, encompassing a

multitude of research studies and tools dedicated to addressing

the unique linguistic challenges posed by the Sinhala

language. This literature review delves into these challenges

and the existing solutions that serve as the foundation for the

proposed project, which aims to advance Sinhala NLP through

a comprehensive Python library known as SinLingua.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 10, pp 97-107, October-2023

https://doi.org/10.47001/IRJIET/2023.710013

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 99

3.1 Singlish to Sinhala Language Conversion

The primary objective of SinLingua is to bridge a

noticeable research gap in the realm of Singlish to Sinhala

language conversion. While natural language processing

techniques have been explored for various language-related

tasks, limited research has focused on the intricate task of

converting informal Singlish to formal written Sinhala.

Singlish, characterized by its informal nature and a fusion of

Singlish and English, presents unique translational challenges.

Traditionally, rule-based approaches have been

commonly employed in previous studies for Singlish to

Sinhala conversion. These studies have leveraged Sinhala

phonetic sets and transliteration rules to facilitate the

conversion process [1][2][3][4][5]. However, the accuracy of

these rule-based systems is often hindered by the variations in

Singlish spelling and Sinhala pronunciation, making it a

suboptimal solution for complex translations.

In contrast, machine learning-based approaches have

demonstrated substantial potential in NLP tasks [3][6]. A rule-

based transliteration technique for Singlish to Sinhala has been

explored, achieving an accuracy of 93.2% by employing a

dictionary-based approach and rules for complex phrases [7].

The proposed project acknowledges the limitations of rule-

based approaches and aims to leverage machine learning

techniques to develop a Python library that can accurately

convert Singlish to Sinhala, effectively addressing the

challenges posed by variations and nuances present in the

Singlish language [8].

3.2 Sinhala Grammar Rule Mapping

Sinhala language processing has faced constraints, with

limited resources and tools for efficient conversion of spoken

Sinhala to written text. Existing tools provide machine

learning-based solutions but often lack proper grammar rules

for accurate Sinhala language conversion. This absence of

grammar rules results in reduced accuracy and efficiency.

Additionally, these tools lack the real-time performance

required for various applications.

The proposed SinLingua library aims to bridge this gap

by implementing a machine learning-based approach that

provides accurate Sinhala language conversion, with proper

grammar rules, offering optimized real-time performance. It

addresses the research gap by combining rule-based and

machine learning-based methods, allowing accurate stem word

generation and enhancing adaptability to different accents and

dialects [8].

3.3 Sinhala Text Preprocessing

While several tools and libraries for Sinhala text

processing exist, there are significant limitations that hinder

their efficiency in cleaning and preprocessing Sinhala text

data. Rule-based approaches are commonly employed in

existing tools, but these have limitations in handling variations

and nuances of the Sinhala language, and most do not support

different variations of Sinhala text [9][10][11].

The proposed SinLingua library introduces a hybrid

approach that combines rule-based and machine learning-

based methods to handle complex Sinhala text data accurately

and efficiently [11]. It aims to fill the research gap by

supporting various Sinhala language variations, enabling

integration with other systems, and offering support for large

text datasets. Additionally, the library focuses on user

interface design, providing a user-friendly experience.

3.4 Sinhala Text Summarization

The realm of Sinhala text summarization has seen prior

research efforts that primarily focused on extractive

summarization methods [6]. These studies concentrated on

specific domains, such as news articles, and employed

methods like text rank algorithms for extractive

summarization. These works contributed to the understanding

of Sinhala text summarization but often had limitations,

including a lack of customization options for summarization

length and coverage for various content types.

The proposed SinLingua library endeavors to address

these limitations by introducing a hybrid summarization

model, customizable summarization length, and translation

capabilities into the English language. These features are

expected to enhance the utility of Sinhala text summarization

and make it accessible to a wider audience, regardless of their

language proficiency.

In conclusion, the existing research and tools in Sinhala

NLP have paved the way for innovative solutions like

SinLingua [11][12]. This comprehensive Python library

combines rule-based and machine learning-based approaches

to tackle the challenges posed by Singlish to Sinhala

conversion, Sinhala language conversion, text preprocessing,

and text summarization. By addressing these research gaps,

the proposed library aims to contribute to the growth of

Sinhala NLP, benefiting various industries and enabling more

efficient and accurate language processing.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 10, pp 97-107, October-2023

https://doi.org/10.47001/IRJIET/2023.710013

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 100

IV. METHODOLOGY

The methodology encompasses a comprehensive

approach to develop the SinLingua Python library, addressing

various facets of Sinhala language processing. This

methodology is structured to ensure the effective conversion

of Singlish to Sinhala, efficient grammar rule mapping,

sophisticated text preprocessing, and customizable text

summarization.

Given below is the high-level architecture diagram of

SinLingua library.

Figure 1: High-level architecture diagram

4.1 Singlish to Sinhala Language Conversion

 Rule-Based Translation: The Rule-Based Translation

approach offered by the SinLingua Singlish to Sinhala

conversion is a method that relies on predefined linguistic rules

to convert Singlish text into Sinhala. This deterministic

approach ensures efficient, consistent, and rapid translations.

Users can utilize this method by employing the

―RuleBasedTransliterator‖ class. Once the class is imported

and instantiated, the user can simply input the desired Singlish

text, invoking the ―transliterator‖ method to obtain the Sinhala

translation. This approach is ideal for those seeking quick and

uniform translations. First the library separates Singlish text

into logical groups and then it maps corresponding Sinhala

terms through an algorithm from a pre-defined python

dictionary, which is having the corresponding Singlish term

and its Sinhala term as the key-value pairs for each vowel,

consonant and dependent vowel. As an example; ―a‖: ―අ‖,

―aa‖: ―ා ‖, and ―sh‖: ―඾‖.Finally, it gets

―ඔය ටදැන්ක ොක ොමද‖ for input ―oyaata dhaen kohomadha‖.

Figure 2: Part of the rule-based algorithm

Machine Translation via the FastText Model: Machine

Translation using the FastText model integrates word

embeddings [13], specifically FastText‘s pre-trained Sinhala

word vectors, to heighten translation accuracy. Word

embeddings, which map words to a semantic space based on

context, allow for richer and contextually apt translations. The

process starts with a rule-based translation of Singlish text to

Sinhala. This initial translation is then refined using FastText‘s

vectors to suggest semantically similar Sinhala words. This

dual approach ensures the translated text captures both the

direct meaning and the nuanced context of the original text. To

facilitate this, the library includes the ―transliterator‖ function

of ―MachineTransliterator‖ class, enabling users to harness

this combined power of rule-based translation and semantic

word embeddings seamlessly.

Figure 3: Function for get best suggestions for a particular word through

FastText model

Hybrid Translation: The SinLingua Singlish Hybrid

Translation method synergizes rule-based and Large Language

Models (LLMs) to yield precise and context-sensitive Sinhala

translations. Here it used gpt-3.5-turbo model from OpenAI as

the LLM [14]. At its core lies the ―HybridTransliterator‖ class,

which facilitates this fusion. Users can employ this class for

transliteration tasks. For refining translations, two utilities are

offered: The Machine Mask Translation, which identifies and

masks misspelled Sinhala words, and the Machine Suggest

Translation, which provides replacement suggestions for

masked words. This latter utility can be applied using two

distinct approaches: one involves manual word masking, while

the other harnesses automated machine masking. User should

provide OpenAI API key and Organization ID as the

parameters for the class HybridTransliterator. Additionally,

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 10, pp 97-107, October-2023

https://doi.org/10.47001/IRJIET/2023.710013

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 101

users can customize default prompts via optional parameters

other than the pre-defined prompts which library utilizes to get

responses through API for a more tailored experience.

Figure 4: Function to process prompts through gpt-3.5-turbo model

Manual Translation: The SinLingua Singlish Manual

Translation method allows for hands-on, context-specific

adjustments to translations using the ―ManualTransliterator‖

class. Initially, users map each word in the Sinhala text to a

unique coordinate with the ―generate_coordinates‖ method,

which can be exported to a CSV for visualization. Next,

targeted cells within this coordinate grid can be altered using

the ―replace_cells‖ method, with an option to undo changes if

needed. The framework also offers manual masking, where

specific words can be temporarily obscured and later refined;

this is especially useful in tandem with the Hybrid

Translation‘s ―machine_suggest‖ method. Finally, the

―reconstruct_text‖ method reverts the modified dataframe

back into a textual format, ensuring that translations align with

a user‘s contextual intent.

4.2 Sinhala Grammar Rule Mapping

The Sinhala Verbal Text to Written Text Conversion

module is designed to transform informal Sinhala verbal

sentences into written text that conforms to Sinhala grammar

rules. The conversion process is achieved through a

combination of rule-based and machine learning approaches.

Rule-Based Approach: The initial step involves

employing a set of predefined Sinhala grammar rules to the

given verbal sentence. These rules encompass various

grammatical aspects such as tense, subject-verb agreement,

and pluralization. Each rule is represented by a function within

the ―GrammarMain‖ class. For instance, based on the

subject‘s tense and the corresponding verb, the module applies

the appropriate rule. For example, sentences starting with

―මම‖ or ―ම ‖ in present tense should end with ―මි‖. Similarly,

sentences starting with ―අප‖ or ―අපි‖ in present tense should

conclude with ―මු‖. The module maps different subject

pronouns and tenses to the correct verb endings, ensuring

grammatical correctness.

Machine Learning Approach: To enhance accuracy, the

module leverages the SinhalaBERTo model, a Sinhala BERT-

based language model. Integrated into the LLMConfig class,

this model predicts suitable written text for the given verbal

sentences.

By inputting the verbal sentence into SinhalaBERTo, the

module generates contextually relevant written output. This

output serves as an alternative or validation for the rule-based

conversion.

Figure 5: Sinhala grammar rules process flowchart

4.3 Sinhala Text Preprocessing

The ―SinhalaStemmer‖ class, an integral component of

the SinLingua library, is devised to elevate the accuracy and

efficiency of Sinhala text preprocessing through a systematic

four-step stemming process. Each procedure is meticulously

crafted to address different aspects of stemming intricacies

within the Sinhala language.

Stem Dictionary Lookup (Step One): This initial

procedure harnesses a substantial corpus called the stem

dictionary, which pairs Sinhala words with their

corresponding stemmed forms. The objective is to determine

potential stems for input words by conducting a

straightforward comparison. Within the method ―step_one‖,

the program queries the stem dictionary for a match with the

provided input word. Upon finding a match, the method

directly substitutes the input word with its corresponding

stemmed form.

Suffix Removal (Step Two): The second procedure

focuses on the identification and removal of common suffixes

inherent to the Sinhala language. The method ―step_two‖

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 10, pp 97-107, October-2023

https://doi.org/10.47001/IRJIET/2023.710013

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 102

systematically examines the input word for the presence of

recognized suffixes stored in the suffix list. By iterating

through these suffixes and checking for their occurrence at the

end of the input word, the algorithm identifies and eliminates

suffixes that signal grammatical variations or tense changes.

Inner Suffix Handling (Step Three): Complex word

formations in Sinhala can result in nested suffixes, presenting

a challenge for accurate stemming. The third procedure,

―step_three‖ is designed to manage this intricacy. It extends

beyond the basic suffix removal by addressing inner suffixes

that might exist within a word. By examining both the suffixes

and their preceding characters, the algorithm accurately

identifies and removes inner suffixes. If an inner suffix

removal alters dependent vowels, the algorithm ensures proper

handling to maintain word integrity.

Dependent Vowel Suffix Removal (Step Four): Sinhala

suffixes that commence with dependent vowels are distinctive

and demand specialized treatment. The fourth procedure,

―step_four‖ specifically targets these cases. The algorithm

identifies suffixes with dependent vowel prefixes and

eliminates them, contributing to cohesive stemming while

preserving the core meaning of words. The step-by-step

execution of this process aligns with the algorithm‘s

meticulous approach, ensuring the comprehensive handling of

diverse suffix patterns.

The ―SinhalaStemmer‖ class encapsulates the complete

stemming process, with the overarching method stemmer

accepting both individual words and lists of words. This

method orchestrates the application of all four procedures,

accommodating variations in input type and word

characteristics. For individual words, the method passes them

through each procedure sequentially, producing the final

stemmed form. In the case of word lists, the method performs

the same procedure sequence for each word, generating a list

of stemmed outputs.

Stop word handling is a fundamental step in the Sinhala

text preprocessing pipeline. It involves the identification and

removal of stop words – frequently occurring but contextually

uninformative words – from the text. These words, such as

―ස ‖ (and), ―සමග‖ (with), and ―ක඼ස‖ (like), are part of a

predefined list of stop words. The primary goal of this process

is to eliminate words that add minimal semantic value to the

text while focusing on the meaningful content.

Tokenization is a foundational process in Sinhala text

preprocessing that involves breaking down a continuous

stream of text into individual units known as tokens. These

tokens typically correspond to words or sub-words, and they

serve as the building blocks for subsequent linguistic analysis

and processing.

Figure 6: Sinhala text preprocessing process flowchart

4.4 Sinhala Text Summarization

In the comprehensive study of text summarization

methodologies, a diverse array of models was evaluated,

spanning both traditional and cutting-edge techniques. This

analysis encompassed the TF-IDF model, a well-established

statistical method that gauges a term‘s significance through its

frequency. Additionally, the BERT (Bidirectional Encoder

Representations from Transformers) model, a deep learning-

based approach, was included due to its prowess in

understanding bidirectional textual context. The Longformer,

a modification of the transformer architecture, stands out for

its capability to process extensive texts via a specialized global

attention mechanism. The FastBERT model, a more efficient

iteration of BERT, offers a harmonious blend of performance

and speed. Lastly, The Fast Longformer combines the

swiftness of DistilBERT with the depth of Longformer,

offering a balanced hybrid solution. To optimize the input

textual data, which encompassed articles, blogs, research

papers, and narratives, several preprocessing steps were

undertaken. This included tokenization, removal of stopwords,

and sentence segmentation, all executed with an emphasis on

maintaining linguistic integrity.

TF-IDF Model: Statistical measure evaluating word

importance in a document relative to a corpus. To generate

summary, compute term frequency (TF) for each word in the

document. Then calculate inverse document frequency (IDF)

for each term against the corpus. Assign a weight to each

sentence based on the aggregate TF-IDF scores of its

constituent terms. Finally Select the top-ranking sentences to

form the summary.

BERT Model: Deep learning model that analyzes text

bidirectionally to understand word context. To generate

summary, tokenize the input document. Convert the tokens

into embeddings using BERT‘s pre-trained weights. Process

the embeddings through an encoder-decoder neural network

structure. Predict the inclusion probability of each sentence in

the summary. Select the top-ranked sentences based on their

predicted probabilities.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 10, pp 97-107, October-2023

https://doi.org/10.47001/IRJIET/2023.710013

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 103

Longformer Model: An extension of BERT designed to

handle longer documents using both local and globalattention

mechanisms. To generate summary, tokenize the input

document. Convert the tokens into embeddings similarly to

BERT. Process the entire document without truncation using

Longformer‘s attention mechanisms. Predict the importance of

each sentence based on the model‘s outputs. Aggregate the

most relevant sentences to form the summary.

FastBERT Model: A lighter and faster version of BERT

achieved by training a smaller student model to mimic a

larger, pre-trained teacher model. To generate summary,

tokenize the input document. Convert tokens into embeddings.

Evaluate the significance of each sentence using the

streamlined architecture of DistilBERT. Compile the top-

ranking sentences to produce the summary.

Fast Longformer (Hybrid Model): A hybrid model that

combines the speed of DistilBERT with the long-document

handling capability of Longformer. To generate summary,

tokenize the input document. Convert tokens into embeddings.

Evaluate the relevance of each sentence using a combination

of distilled architecture and global attention mechanisms.

Concatenate the most pertinent sentences to produce the

summary.

V. RESULT AND DISCUSSION

The central outcome of this project is the publication of

the SinLingua library on PyPI, the Python package repository.

This library simplifies the process of Sinhala language

processing and can be conveniently installed using the 'pip'

command.

Figure 7: PyPI project page for SinLingua library

The functional results obtained using the SinLingua

Python library can be categorized into four fundamental

components, each of which is designed to enhance and

streamline various aspects of Sinhala language processing.

5.1 Singlish to Sinhala Conversion

After importing the SinLingua library, users are required

to import specific classes developed within the library based

on their intended usage for Singlish to Sinhala language

conversion. Below are the classes that need to be imported:

Figure 8: Importing required classes for Singlish to Sinhala conversion in

SinLingua library

To facilitate Singlish to Sinhala conversion using a rule-

based approach, the SinLingua library provides a dedicated

class called "RuleBasedTransliterator." This class serves as the

core component for implementing the rule-based conversion

method. Users can employ this class as outlined below:

Figure 9: Example of rule-based translator

Here we initialize a variable named singlish_text and

assign it the value "oyaata kohomadha", which translates to

"ඔය ටක ොක ොමද" in Sinhala by using. But when using the

rule-based approach, there is a limitation related to the need

for an exact mapping between Singlish and Sinhala. The rule-

based approach relies on predefined rules and mappings to

perform the conversion.

However, the introduction of the Machine Translation

technique, anchored on the FastText Model, addressed this

issue. Upon assessing various translations, it was discernible

that by leveraging Sinhala word vectors, the translations

weren‘t just accurate but were infused with contextual depth

and linguistic nuances. This makes the translation more

natural and relatable to native Sinhala speakers.

The machine learning (ML) approach, while offering

notable advantages, does come with certain disadvantages.

One significant drawback is its time-consuming nature.

Additionally, ML models, such as those relying on FastText

vectors, necessitate that the words in the input text exist within

the pre-trained vector space to yield correct results. This

limitation can lead to inaccuracies when dealing with out-of-

vocabulary terms or domain-specific jargon. To mitigate these

shortcomings and ensure a more comprehensive and adaptable

solution, the SinLingua library adopts a hybrid approach that

combines rule-based methods for handling known expressions

and machine learning techniques like Large Language Models

(LLMs) for broader coverage and adaptability.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 10, pp 97-107, October-2023

https://doi.org/10.47001/IRJIET/2023.710013

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 104

Figure 10: Example of hybrid translator

An illustrative example of this is the Singlish phrase

"oyata den kohomada." While conventional translation tools

often falter, yielding outputs like (ඔයටකෙන්ක ොක ොමෙ), the

SinLingua system excels, providing a more authentic

translation as (ඔය ටදැන්ක ොක ොමද, oyaata dhaen

kohomadha). Notably, what distinguishes the system is its

optional manual translation feature, underscoring the

indispensable role of human intervention in translations. By

allowing users to refine translations, it not only ensures the

highest level of accuracy but also empowers users to tailor

translations to specific dialects or regional preferences.

5.2 Sinhala Grammar Rule Mapping

Here are the Sinhala grammar rules defined within the scope

for mapping purposes.

Figure 1: List of grammar rules

These rules have been implemented as distinct functions

within the SinLingua Library. The purpose of these functions

is to establish the mapping of Sinhala grammar rules with a

given sentence.

 Example 1: To demonstrate the functionality of the

'mapper()' function within the SinLingua library,

consider the input sentence: "අපි ෑම ෑල ." Upon

applying this sentence to the 'mapper()' function, it

produces the following output:

"අපි ෑම ෑකලමු."―අපි ෑම ෑල ‖

 Example 2: Let's illustrate the use of the 'mapper()'

function within the SinLingua library with the input

sentence: "ඔහුඉත ආදරකයන්කදම පියන්නමදිනල ." When

processed by the 'mapper()' function, it yields the

following output: "ඔහුඉත ආදරකයන්කදම පියන්නමදියි."

Let's examine these two examples at the codebase level,

where user will simply utilize the SinLingua Library to obtain

the grammatically corrected output. This is the class that needs

to be imported: ‗GrammarMain‘.

Figure 2: Import GrammarMain class

Here's how to obtain the grammatically corrected output

using the given two examples.

 Example 1:

Figure 3: User calls the mapper() function to get output 1

 Example 2:

Figure 4: User calls the mapper() function to get output 2

Let's delve into the step-by-step procedure of the

provided code. To begin, we initiate an instance of the

'GrammarMain' class, an integral component of the SinLingua

Library. Next, we define the original informal Sinhala

sentence and store it in a variable named 'sentence.' Following

this, we execute the grammar correction process by invoking

the 'mapper' method of the 'GrammarMain' instance, utilizing

the 'sentence' variable as an argument. Finally, we retrieve and

print the corrected sentence, representing the successful

outcome of the grammar correction operation. This sequence

of actions ensures the accurate refinement of Sinhala

sentences for enhanced linguistic precision.

There is another feature to predict missing word using

SinLingua Library. Just need to set <mask> for the word you

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 10, pp 97-107, October-2023

https://doi.org/10.47001/IRJIET/2023.710013

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 105

want to predict. This is how the library provides output with

up to five appropriate suggestions.

Figure 5: Predict five best suggestions from berto_predict_top()

Let's walk through the sequential steps within the

provided code. Firstly, we initiate an instance of the

'LLMConfig' class, a fundamental component integrated into

the SinLingua Library. Subsequently, we craft an informal

Sinhala sentence and incorporate a '<mask>' token, facilitating

word prediction. Employing the language model, we utilize

the expression 'obj.berto_predict_top(sentence=sentence)' to

predict the top word suggestions for the masked word

position. Finally, we demonstrate the enhanced capabilities of

the SinLingua Library by printing up to five relevant word

suggestions. This process underscores the library's role in

elevating Sinhala language comprehension and processing,

further contributing to its proficiency.

5.3 Sinhala Text Preprocessing

In the realm of Sinhala data processing, Stemming is a

critical process within language preprocessing. Its primary

objective is the reduction of words to their fundamental or root

forms. In the context of Sinhala, stemming presents unique

challenges owing to the language's agglutinative nature, where

affixes are added to words for conveying diverse meanings.

This section delves into the stemming component of the

Sinhala text preprocessing library and the methodologies it

employs to enhance accuracy.

The stemming component yielded promising results in

handling regular inflections and common word forms. It

consistently and accurately reduced words to their base forms,

thereby enhancing downstream text analysis. Nevertheless, it's

imperative to recognize the challenges posed by irregular

inflections and domain-specific terms that may fall outside the

scope of the stem dictionary. In such cases, incorrect

stemming or the preservation of original words could occur.

Given below is the way of use Sinhala stemming

functionality of SinLingua. First user should initialize

SinhalaStemmer from SinLingua‘s preprocessor module.

Figure 6: Import preprocessor module classes from SinLingua library

The following code segment demonstrates the utilization

of the ‗SinhalaStemmer‘ class within the SinLingua library. It

serves the purpose of stemming, which is the process of

reducing words to their root or base form in the context of

Sinhala text preprocessing. The outcome is a more refined and

structured representation of the original text, contributing to

enhanced accuracy and efficiency in subsequent text analysis

and language processing tasks.

Figure 7: Example for use stemmer() function

Next, preprocessor module focuses on stopword removal.

It employs the ‗StopWordRemover‘ class to eliminate

common stopwords from a given paragraph. This process is

critical for refining the input text, as stopwords often carry

little semantic value and can be a hindrance in various

language processing tasks. The outcome, 'remaining_words,'

represents the paragraph with stopwords removed, enhancing

the quality of the text for downstream analysis.

Figure 8: Example for use remove_stop_words() function

Sinhala tokenization is showcased using the

‗SinhalaTokenizer‘ class. Tokenization is a fundamental step

in text preprocessing that involves splitting a paragraph into

individual words or tokens. This process is essential for tasks

like language understanding, sentiment analysis, and topic

modeling. The 'tokenz' variable contains the result of the

tokenization process, which allows for more granular analysis

and manipulation of the text.

Figure 9:Example for use tokenize() function

5.4 Sinhala Text Summarization

In testing the library‘s capacity to summarize Sinhala

articles, it used a variety of Sinhala articles covering diverse

topics such as politics, economy, sports, and culture. The

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 10, pp 97-107, October-2023

https://doi.org/10.47001/IRJIET/2023.710013

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 106

library demonstrated its efficiency by extracting key

information and creating well-structured summaries. In the

quest to find the most optimal model for text summarization,

our results illuminated a fascinating interplay between

accuracy, speed, and user preferences.

5.4.1 TF-IDF Model

As anticipated, the TF-IDF model stood as a robust

baseline, given its simplicity and efficiency. It quickly

processed texts, highlighting key terms based on their

frequency. However, in terms of qualitative output, the

summaries often missed nuanced context or sentiment of the

original content, which is a limitation inherent to its statistical

nature. While it sufficed for shorter texts or articles with a

direct informational tone, for longer and context-rich content,

it somewhat faltered.

5.4.2 BERT Model

The BERT model showcased its prowess in

understanding context. Summaries derived were coherent and

more aligned with the underlying sentiments of the original

texts. Nevertheless, it demanded considerable computational

resources and time, which made it slightly less appealing for

real-time applications. Its bi-directional context

comprehension, while powerful, was computationally

expensive.

5.4.3 Longformer

Longformer, with its global attention mechanism,

excelled in processing extensive texts. It provided

comprehensive summaries for long documents, and its

capability to attend to broader contexts proved beneficial. Yet,

it bore the brunt of being one of the slower models due to its

intricate architecture.

5.4.4 DistilBERT (FastBERT)

DistilBERT struck a fascinating balance. While it didn‘t

match BERT‘s depth in context understanding entirely, it

compensated by being significantly faster. For applications

where speed was a priority without substantial compromise on

quality, DistilBERT emerged as a strong contender.

5.4.5 Fast Longformer

The hybrid approach attempted to merge the depth of

Longformer with the speed of DistilBERT. Results displayed

its competence in summarizing longer texts faster than the

Longformer but at the slight expense of depth. It seemed to be

a worthy compromise for applications needing summaries of

large texts within shorter timeframes.

Upon presenting the summarized outputs to a diverse

group of participants, the feedback was enlightening. Users

who required quick, concise summaries for decision-making

or information extraction leaned towards DistilBERT. In

contrast, researchers and professionals, who needed in-depth

summaries, favored the Longformer and BERT.

TF-IDF found its supporters among users who wanted

lightweight applications without the complexities of deep

learning.

In conclusion, while each model had its own strengths

and weaknesses, the ―best‖ model was contingent upon

specific user requirements and application scenarios. Future

work might look into refining these models further, perhaps

integrating their strengths or exploring more hybrid

approaches to achieve the elusive balance of speed, accuracy,

and depth in text summarization.

ACKNOWLEDGMENT

The completion of this project could not have been

possible without the assistance of a lot of individuals, even

though each and every person might not be enumerated. Their

contributions are sincerely appreciated and gratefully

acknowledged. However, the group would like to express their

deep appreciation and indebtedness particularly for the

everyone who supports.

REFERENCES

[1] Abeysekara, D. (2022). Singlish to Sinhala Language

Conversion Systems: A Review. International Journal

of Natural Language Processing, 10(2), 56-72.

[2] Abeysinghe, R. G., & Abeysekara, D. M. (2019). An

Approach for Transliterating Singlish Sentences into

Sinhala Text. International Journal of Advanced

Computer Science and Applications, 10(4), 77-81.

[3] Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural

Machine Translation by Jointly Learning to Align and

Translate. Proceedings of the International Conference

on Learning Representations.

[4] Dharmawardena, K. P., Weerasinghe, W. M. A. D., &

Manawadu, U. A. (2018). Machine Learning

Approaches for Natural Language Processing.

International Journal of Computer Science and

Information Security, 16(5), 19-26.

[5] Hettiarachchi, S. A. U., & Dayarathna, M. A. K.

(2018). A Hybrid Approach to Build a Rule-based

Sinhala to Singlish Transliteration System. In 2018

Moratuwa Engineering Research Conference

(MERCon) (pp. 1-6). IEEE.

[6] Mihalcea, R., & Tarau, P. (2004). TextRank: Bringing

order into text. In Proceedings of the 2004 conference

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 10, pp 97-107, October-2023

https://doi.org/10.47001/IRJIET/2023.710013

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 107

on empirical methods in natural language processing

(pp. 404-411).

[7] Abeysekara, D., Ranasinghe, T., & Jayasena, S. (2021).

Rule-Based Transliteration of Singlish to Sinhala.

International Journal of Advanced Computer Science

and Applications, 12(4), 338-345.

[8] Works Cited ―2023-118 / 2023-118.‖ GitLab,

gitlab.sliit.lk/2023-118/2023-118. Accessed 10 Sept.

2023.

[9] NLTK. ―Natural Language Toolkit — NLTK 3.4.4

Documentation.‖ Nltk.org, 2009, www.nltk.org/.

[10] Numpy. ―NumPy.‖ Numpy.org, 2009, numpy.org/.

[11] SinLingua. ―සිංLingua: Sinhala Language Data

Processing Library.‖ GitHub, 2 Sept. 2023,

github.com/SinLingua/documentation. Accessed 9

Sept. 2023.

[12] Singlish to Sinhala Transliteration using Rule-based

Approach: Tharindu Abeysekara, Nadeeka De Silva,

Srinath Perera, Sandaruwan Wijekoon, & Madhavi

Latha. (2021). Singlish to Sinhala Transliteration using

Rule-based Approach. IEEE Xplore. Retrieved from

https://ieeexplore.ieee.org/document/9660744

[13] Sinhala Unicodes: SLUnicodes. (n.d.). Sinhala

Unicodes. Retrieved from https://slunicodes.com/

[14] OpenAI. ―OpenAI.‖ OpenAI, 25 Apr. 2019,

openai.com/.

AUTHORS BIOGRAPHY

Supun Sameera, a dedicated Software

Engineer at Innodata Lanka, is a

passionate Python programmer and data

science enthusiast contributing to the

world of IT.

Sandaruwini Galappaththi, a Junior

Software Engineer at WIA Systems Inc.,

excels in Oracle Database Management

and is committed to professional growth

in the IT industry.

Binura Yasodya, an Intern Data

Scientist at MAS Holdings, actively

contributes to data science with a strong

interest in Python programming and

machine learning.

Supun Sarada Wijesinghe, a Junior

Data Engineer, brings a wealth of

knowledge and strong dedication to

Python programming, data pipeline

development, and deep learning.

Dr. Anjalie Gamage, a Senior Lecturer

at the Sri Lanka Institute of Information

Technology, is a highly accomplished

academic professional with expertise in

Computational Linguistics, NLP, AI, and

E-Learning.

Bhagyanie Chathurika, the Academic

Coordinator at the Sri Lanka Institute of

Information Technology, Matara Center,

is a dedicated lecturer with a keen

interest in Machine Learning, Deep

Learning, and Image Processing, actively

contributing to the advancement of

technology and computer science.

Citation of this Article:

Supun Sameera, Sandaruwini Galappaththi, Sarada Wijesinghe, Binura Yasodya, Anjalie Gamage, Bhagyanie Chathurika,

―SinLingua: Python Library for Sinhala Data Processing‖ Published in International Research Journal of Innovations in

Engineering and Technology - IRJIET, Volume 7, Issue 10, pp 97-107, October 2023. Article DOI

https://doi.org/10.47001/IRJIET/2023.710013

https://doi.org/10.47001/IRJIET/2023.710013

