
International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 11, pp 57-62, November-2023

https://doi.org/10.47001/IRJIET/2023.711009

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 57

Autonomous CBSL Mobile Security Compliance

Testing Tool
1
R M S A Karunadasa,

2
Y G A S Karunarathna,

3
I A R R Illankoon,

4
U G R M Dias,

5
Kanishka Yapa,

6
Amila Senarathne

1,2,3,4,5,6
Department of Computer Systems Engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka

Authors E-mail:
1
shanuka.ashen.10@gmail.com,

2
avishka.kings29@gmail.com,

3
illankoon.roshini@gmail.com,

4
ramindudias@gmail.com,

5
kanishka.y@sliit.lk,

6
amila.n@sliit.lk

Abstract - In response to the Central Bank of Sri Lanka's

(CBSL) regulations governing mobile payment

applications across various scenarios, this research

introduces "MOBY GUARD," an Autonomous CBSL

Mobile Security Compliance Solution. CBSL mandates

compliance for new mobile payment services, service

modifications, security breaches, CBSL-initiated

assessments, payment gateway provider assessments, and

general regulatory alignment. Traditionally, mobile

application vendors developed their applications and

sought external organizations to assess compliance with

CBSL guidelines, permitting publication on platforms like

the Google Play Store. However, MOBY GUARD presents

an innovative approach, enabling payment-related mobile

application owners to autonomously perform CBSL

security compliance assessments. This eliminates third-

party involvement, reducing time and cost overheads. By

enabling in-house security checks, MOBY GUARD

enhances efficiency, allowing for more frequent and

thorough security evaluations. Focusing on Android

applications for the Google Play Store, the project

addresses 86 CBSL compliance requirements, prioritizing

the three most critical ones. These components encompass

root detection, code integrity checks, SSL pinning, and

Smali code modifications. This approach proactively

strengthens the security of payment-related mobile

applications while optimizing the compliance process.

Keywords: CBSL Regulations, Mobile Payment Applications,

Security Compliance, Android Platform, Security

Enhancement, Compliance Testing.

I. INTRODUCTION

The Central Bank of Sri Lanka (CBSL) has established

regulations mandating mobile payment applications to adhere

to a defined set of requirements across various scenarios:[1]

1) Prior to Launching a New Mobile Payment Service in Sri

Lanka: Mobile payment service providers must ensure

compliance with CBSL stipulations before introducing a

new service.

2) When Modifying an Existing Mobile Payment Service:

Changes made to an existing mobile payment service

necessitate adherence to the prescribed requirements.[1]

3) In Case of Suspected Security Breach in a Mobile

Payment Service: Should a security breach be suspected,

immediate action must be taken to meet CBSL

requirements.[1]

4) Upon Request for Assessment by the CBSL: The CBSL

can initiate an evaluation, prompting mobile payment

providers to undergo the assessment process.[1]

5) In Response to Assessment Requests from Payment

Gateway Providers: Payment Gateway providers can ask

for a CBSL assessment, compelling compliance from

mobile payment services.[1]

6) When Ensuring Compliance with Applicable

Regulations: Mobile payment providers need to

guarantee alignment with all relevant regulations to

operate effectively.[1]

Traditionally, the process involved mobile application

vendors developing their applications either independently or

with software solution providers. Following development, an

external organization conducted security compliance testing to

ascertain CBSL guideline adherence. Only upon successfully

passing these guidelines could the application be published on

platforms like the Google Play Store [1].

However, the proposed security solution introduces an

innovative approach empowering payment-related mobile

application owners to independently perform CBSL security

compliance assessments. This eliminates the necessity of

third-party involvement, thus reducing time and costs

associated with compliance testing. By enabling in-house

security checks, this solution enhances the efficiency of

compliance testing, enabling more frequent and thorough

evaluations of application security. Ultimately, this approach

fosters a proactive CBSL compliance stance, bolstering the

security of payment-related mobile applications overall.

Focusing solely on the Android platform and applications

destined for the Google Play Store, this project addresses the

86 key compliance requirements within the CBSL's

mailto:1shanuka.ashen.10@gmail.com
mailto:2avishka.kings29@gmail.com
mailto:3illankoon.roshini@gmail.com
mailto:4ramindudias@gmail.com
mailto:5kanishka.y@sliit.lk
mailto:6amila.n@sliit.lk

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 11, pp 57-62, November-2023

https://doi.org/10.47001/IRJIET/2023.711009

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 58

Compliance list.[1] While all requirements hold importance,

the project will prioritize the three most critical ones,

estimated to take approximately five working days to fulfill.

With available resources and local personnel, the projected

cost of this endeavor stands at a minimum of half a million Sri

Lankan rupees.

II. LITERATURE REVIEW

The realm of mobile payment applications has witnessed

substantial growth and innovation, accompanied by an

increasing need for robust security measures to safeguard user

data and financial transactions. In response to this evolving

landscape, the Central Bank of Sri Lanka (CBSL) has

instituted a series of regulations mandating compliance for

mobile payment applications across various operational

scenarios. This literature review aims to explore existing

research and practices in the domain of mobile payment

application security, with a specific focus on the

implementation of the critical compliance standards outlined

by the CBSL.

The introduction of CBSL's regulations represents a

significant step towards fortifying the security of mobile

payment applications. Traditional practices involved mobile

application vendors developing their solutions either

independently or with the assistance of software solution

providers. Subsequently, third-party organizations conducted

security compliance testing to ensure adherence to CBSL

guidelines, allowing applications to be published on platforms

such as the Google Play Store. However, this approach often

incurred additional time and costs.

The proposed security solution, as outlined in the

methodology, introduces a transformative approach by

empowering payment-related mobile application owners to

autonomously perform CBSL security compliance

assessments. This innovative shift eliminates the reliance on

third-party organizations for compliance testing and, in turn,

streamlines the process. The literature surrounding mobile

application security underscores the importance of a proactive

stance,advocating for strategies that enable real-time

assessment and adaptation to emerging threats. This approach

aligns with the proposed solution's objective of conducting in-

house security compliance checks, thus enhancing overall

efficiency and agility in addressing security concerns.

The three critical compliance standards identified for

implementation reflect pertinent challenges in the mobile

application security landscape. "Root Device Detection"

tackles the vulnerability associated with rooted devices, a

common target for malicious attacks. Research in mobile

security emphasizes the significance of addressing root

detection as part of a comprehensive defense strategy against

potential breaches. The proposed method of Java file analysis

for root detection aligns with established practices while

introducing an innovative checklist-based approach.

"Code Integrity Check" and "SSL Pinning check and

bypass" address code manipulation and data interception

concerns. These components resonate with contemporary

security research, which highlights the significance of code

integrity to prevent unauthorized code modifications and SSL

pinning to secure data transmission. The methodology's

recommendation-focused approach to bolstering code integrity

and SSL pinning aligns with best practices for maintaining

application security in the face of evolving attack vectors.

Moreover, the integration of all outputs from the

individual components into a consolidated "Patched version"

reflects a holistic approach to security enhancement. Research

underscores the importance of comprehensive security

strategies that encompass multiple layers of defence. By

consolidating insights gained from individual assessments, the

methodology aligns with the broader perspective of layered

security measures.

In conclusion, the literature review highlights the

significance of CBSL's initiative in the context of mobile

payment application security. By combining established

practices with innovative approaches, the proposed solution

resonates with the broader landscape of mobile application

security research. The proactive stance, emphasis on in-house

assessments, and incorporation of multiple security

components reflect a comprehensive strategy aligned with

contemporary best practices. As the mobile payment

landscape continues to evolve, strategies that foster agility,

autonomy, and robust security are poised to play a pivotal role

in ensuring the safety of financial transactions and user data.

METHODOLOGY

The following are the three critical compliance standards

identified in the "Guidelines on Minimum Compliance

Standards for payment related mobile Applications" published

by CBSL that we have chosen to implement for this project.

Individual Component I - Root Device Detection

 CBSL guideline: 14.2 Payment related mobile

applications shall not be allowed to be executed on

rooted devices.[1]

 The first component of the process involves Root

Implementation Detection and Magisk Hide Bypass.[2] It

takes an Android application as input and proceeds by

converting the APK file into a Java file for analysis. The

main objective is to determine whether the application

has implemented root detection mechanisms. If such

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 11, pp 57-62, November-2023

https://doi.org/10.47001/IRJIET/2023.711009

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 59

mechanisms are present, the system evaluates their

effectiveness.[3] Additionally, the component assesses

the application's capability to detect Magisk Hide, a

popular root hiding technique. If the app lacks Magisk

Hide detection, the component provides

recommendations for integrating this functionality. [4]As

an outcome, a comprehensive checklist detailing the root

and Magisk Hide detection status is generated,

accompanied by suggestions to enhance Magisk Hide

detection methods. This component plays a crucial role

in enhancing the security and robustness of Android

applications against potential security breaches related to

rooted devices and root hiding mechanisms.

Individual Component II - Code Integrity Check

 CBSL guideline: 14.1 The following checks shall be

implemented in the server-side to verify the integrity and

to detect any manipulation of the client application.

[1]These checks can be executed at the start of the

payment related mobile application or as appropriate. If

any of these checks fail, payment related mobile

application shall be disabled.

 Hash values/checksums of code blocks, classes, or

the whole program

 Validate the size of certain system files or the file

modification timestamps.

 Verify the signature of the package file at the run

time.

 The second component focuses on Code Integrity

Security Detection and Prevention within the context of

Android applications.[5] Beginning with an Android

application as input, the component initiates the process

by converting the provided APK file into a Java file for

in-depth analysis.[6] The primary objective is to assess

whether the application has integrated code integrity

detection measures. Regardless of the presence of such

measures, the component proceeds to offer

recommendations for the adoption of advanced code

integrity implementation techniques. The resulting output

from this component is a set of tailored recommendations

aimed at bolstering the application's code integrity

mechanisms. This facet of the process significantly

contributes to the enhancement of the application's

overall security posture by ensuring the integrity and

authenticity of its code base, thereby minimizing the

potential for malicious code manipulation or

unauthorized modifications.

Individual Component III - SSL Pinning check and bypass

 CBSL guideline: 12.4 Controls to mitigate bypassing of

certificate pinning shall be implemented.[1]

 The third component revolves around SSL Certificate

Pinning Bypassing within the realm of Android

applications.[7] Commencing with an Android

application as the initial input, the component undertakes

the conversion of the provided APK file into a Java file,

subsequently subjecting it to a comprehensive

evaluation. The core focus is placed on ascertaining the

existence of SSL Pinning implementation within the

application. In instances where SSL Pinning measures

are found to be lacking, the component takes the

initiative to offer tailored recommendations for the

incorporation of SSL Pinning. [8]As a resultant output,

the component furnishes a set of strategic suggestions

designed to guide the application's integration of SSL

Pinning techniques.[9] This facet of the process assumes

a pivotal role in fortifying the application's security

framework by advocating for the adoption of SSL

Pinning, thereby fostering a robust defence against

potential vulnerabilities associated with unauthorized

interception or manipulation of data transmitted over the

network.[10]

Regarding the final component, we will create a patch

.apk file by consolidating all the outputs obtained from the

aforementioned individual components.

Individual Component IV – Develop the Patched version

of the initially provided .apk file using the Smali code

according to root, SSL Pinning and Integrity recommendation.

CBSL 12.3 Guideline will be checked.[1]

 The fourth component is centred around the

Implementation of Automated Security for Android

Digital Finance Applications. Its input is derived from

the outputs of the preceding components, encompassing

information concerning root detection, SSL Pinning, and

code integrity measures. The process unfolds by

establishing a linkage between the Java code and the

Smali code, followed by an intricate analysis to pinpoint

the precise path and function necessitating alteration.

Subsequently, targeted modifications are executed on the

Smali code as required, culminating in the reconstruction

of the Android application. The ultimate result achieved

by this component is a patched Android file, one that

reflects the amalgamation of refined security

enhancements obtained from the collective insights

provided by the earlier stages. This component is

instrumental in realizing a fortified security infrastructure

tailored specifically for Android-based financial

applications, ensuring a resilient shield against potential

threats, manipulation, and unauthorized access, thus

fostering the safe and secure utilization of digital finance

services.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 11, pp 57-62, November-2023

https://doi.org/10.47001/IRJIET/2023.711009

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 60

IV. RESULTS AND DISCUSSION

In this research, we present four distinct areas of focus in

the field of Android application security. Each of these

research topics delves into critical aspects of securing Android

apps against various threats and vulnerabilities. We provide an

overview of the research focus, highlighting key findings and

contributions for each area. These insights collectively

contribute to a better understanding of the evolving landscape

of Android app security and the measures required to protect

against potential risks.

Figure 1: Research Focus Radar Chart

Table 1: Research focus and key findings and contributions

Research focus Key Findings and Contributions

Detection of

Magisk Hide in

Android Apps

SafetyNet API Check: Utilizes the

SafetyNet API to assess device

security. Can detect Magisk Hide by

querying SafetyNet and identifying

anomalies. - File System Checks[11]:

Searches for Magisk-related files in

the device's file system, signaling

potential Magisk Hide usage. - Process

and System Property Checks:

Examines running processes and

system properties for signs of root

access manipulation, commonly

associated with Magisk Hide.[12] -

PackageManager Checks: Queries the

PackageManager to find Magisk-

related packages, even on unrooted

devices. - Hook Detection: Monitors

system interactions using hooking

techniques and raises alerts upon

unexpected changes, possibly

indicating Magisk Hide presence.

SSL Pinning in

Android Apps

Common SSL Pinning Libraries:

Discusses libraries like OkHttp,

Research focus Key Findings and Contributions

Retrofit, and TrustKit that support SSL

pinning.[13] Highlights their

importance in securing network

communications. - Bypassing

Techniques for SSL Pinning: Explores

methods attackers might use to bypass

SSL pinning, including rooted devices,

proxy tools, certificate manipulation,

hooking techniques, and code

modification.[14] - Emphasizes the

need for robust SSL pinning

implementation to protect against

these techniques.

Code Integrity

Security

- Code Hardening: Explores dynamic

behavior modification to deter reverse

engineering and unauthorized

alterations. Provides a proactive

defense against tampering attempts. -

Systems Hardening: Covers tools and

methodologies to minimize

vulnerabilities across applications,

systems, firmware, and infrastructure.

- Secure Coding Practices: Includes

meticulous user input validation,

access controls, encryption

mechanisms, and layered security to

fortify code integrity. - Mobile Code

Protection: Applies code hardening to

safeguard mobile apps against

tampering and reverse engineering,

crucial for mobile security. - Software

Pipeline Protection: Ensures code

integrity through controlled processes,

protecting the software supply chain. -

Source Code Security: Involves

policies, controlled access, and

prevention of insecure code usage to

enhance code integrity.

Decompiling

Smali Code in

Android Apps

Decompiling to Smali Code: Discusses

the process of decompiling Android

APKs into Smali code, making the

code human-readable. - Analyzing

Smali Code: Explores the insights

gained from analyzing Smali code,

understanding app architecture, logic,

and security measures like SSL

pinning. - Identifying Entry Points and

Flow: Identifies critical methods and

components that drive an app's

functionality, key for potential

attackers. - Rebuilding the

Application: Demonstrates the

potential to reconstruct apps using

modified Smali code, showing how

attackers can tamper with the app's

behavior. - Integrating Changes:

Explores how attackers can seamlessly

integrate alterations into Smali code,

impacting app behavior. - Compiling

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 11, pp 57-62, November-2023

https://doi.org/10.47001/IRJIET/2023.711009

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 61

Research focus Key Findings and Contributions

to APK: Discusses how attackers can

compile modified Smali code back

into a functional APK. - Implications

for Security: Emphasizes the

challenges in safeguarding intellectual

property and user information,

proposing countermeasures like code

obfuscation and real-time integrity

checks

This comprehensive table provides a condensed summary

of the research efforts across these four Android app security

domains. From detecting hidden root access to strengthening

SSL pinning, ensuring code integrity, and understanding the

risks of decompiling Smali code, these findings significantly

contribute to the knowledge base of mobile application

security. Implementing the recommendations and insights

from these studies is vital for developers and organizations to

build resilient Android apps in an increasingly connected and

dynamic digital landscape.

V. CONCLUSION AND FUTURE WORK

The interaction of four essential elements in this all-

encompassing security strategy for Android applications offers

effective defense against a wide range of threats. Component 1

focuses on detecting root implementation and getting beyond

Magisk Hide to protect against hazards associated with rooted

devices. The focus of Component 2 is on code integrity, which

improves security by spotting and preventing code tampering.

Component 3 deals with SSL certificate pinning bypass,

enhancing the security of data transfer. Combining knowledge

from the earlier components, Component 4 orchestrates

automated security implementation for financial Android apps.

This approach fortifies programs against potential threats by

combining root detection, code integrity, SSL pinning, and

automated security, producing a strong protection architecture.

This all-encompassing strategy guarantees the security of

online financial transactions, protecting user information and

financial assets from theft.

REFERENCES

[1] C. B. o. S. Lanka, "cbsl.gov.lk," 2020. [Online].

Available:

https://www.cbsl.gov.lk/sites/default/files/cbslweb_docu

ments/laws/cdg/psd_guideline_no_1_of_2020_e.pdf.

[2] indusface, "How to Implement Root Detection in

Android Applications," [Online]. Available:

https://www.indusface.com/learning/how-to-implement-

root-detection-in-android-applications/.

[3] Long Nguyen-Vul, Ngoc-Tu Chau, Seongeun Kang,

"Android Rooting: An Arms Race between Evasion and

Detection," 29 Oct 2017. [Online]. Available:

https://www.hindawi.com/journals/scn/2017/4121765/.

[4] "Detecting Magisk Hide," 4 November , 2019. [Online].

Available:

https://darvincitech.wordpress.com/2019/11/04/detecting

-magisk-hide/.

[5] "What is mobile application hardening?," [Online].

Available: https://cybersecurity.asee.co/mobile-

application-hardening/.

[6] "The internals of Android APK build process," 7 Sep

2020.

[7] RedHunt-Labs, "Ultimate-Guide-to-SSL-Pinning-

Bypass-RedHunt-Labs," [Online]. Available:

https://redhuntlabs.com/wp-

content/uploads/2023/07/Ultimate-Guide-to-SSL-

Pinning-Bypass-RedHunt-Labs.pdf.

[8] R. Dasgupta, "Securing Mobile Applications With Cert

Pinning," [Online]. Available:

https://dzone.com/refcardz/securing-mobile-

applications-with-cert-pinning.

[9] Francisco José Ramírez-López , Angel Jesus Varela

Vaca , Jorge Ropero, "A Framework to Secure the

Development and Auditing of SSL Pinning in Mobile

Applications: The Case of Android Devices," November

2019.

[10] F.J. Ram´ırez-Lopez, A. J. Varela-Vaca, J. Ropero, A.

Carrasco, "Guidelines Towards Secure SSL Pinning in

Mobile," 2019.

[11] "How to pass SafetyNet on Android after rooting or

installing a custom ROM," p.

https://developer.android.com/training/safetynet/attestati

on, 31, MAR 2023.

[12] "SafetyNOT: On the usage of the SafetyNet Attestation

API in Android," [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/3458864.3466627.

[13] "Android Security: SSL Pinning," Matthew Dolan, 14,

Jan 2017. [Online]. Available:

https://appmattus.medium.com/android-security-ssl-

pinning-1db8acb6621e.

[14] A. Bhardwaj, "SSL Pinning: Introduction & Bypass for

Android," 17 April 2019. [Online]. Available:

https://niiconsulting.com/checkmate/2019/04/ssl-

pinning-introduction-bypass-for-android/.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 7, Issue 11, pp 57-62, November-2023

https://doi.org/10.47001/IRJIET/2023.711009

© 2023-2017 IRJIET All Rights Reserved www.irjiet.com 62

Citation of this Article:

R M S A Karunadasa, Y G A S Karunarathna, I A R R Illankoon, U G R M Dias, Kanishka Yapa, Amila Senarathne,

“Autonomous CBSL Mobile Security Compliance Testing Tool” Published in International Research Journal of Innovations

in Engineering and Technology - IRJIET, Volume 7, Issue 11, pp 57-62, November 2023. Article DOI

https://doi.org/10.47001/IRJIET/2023.711009

https://doi.org/10.47001/IRJIET/2023.711009

