
International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 9, Issue 4, pp 75-81, April-2025

https://doi.org/10.47001/IRJIET/2025.904010

© 2025 IRJIET All Rights Reserved www.irjiet.com 75

DM Based Multi-Tenant Framework to Perform

Migration in Cloud Environment

Mohammed Sadhik Shaik

Sr. Software Web Developer Engineer, Computer Science, Germania Insurance, Melissa, Texas, USA

E-mail: mshaik0507@gmail.com

Abstract - Amazon Web Services, or AWS, is an easy-to-

use, flexible, and reasonably priced cloud platform. Many

Amazon Web Services (AWS) customers use RDBMS, or

relational database management systems. Deploying and

setting up relational database management systems is

made easier with Oracle Database on AWS. Relational

Database Service (RDS) by Amazon allows users to

manage Oracle databases. These challenges are distilled

into a Service Level Agreement (SLA) that specifies the

standards for the quality of service provided to tenants. In

addition, SLA needs to think about how renters' irregular

workload patterns can affect the level of assurance. In

order to address the issue mentioned before, the

recommended strategy involves operating Oracle Database

on an Amazon RDS-based Multi-Tenant system and

reaping the benefits of it. This TransDB approach

facilitates Oracle database deployment and monitoring, as

well as efficient framework management in Amazon RDS

with enhanced scalability, performance, backup/recovery,

availability, and security. Analyzed performance metrics

include CPU, memory, and network throughput; resources

may be instantly resized; and the network topology is

provisioned to ensure increased security. When put up

against established strategies like Allocation and the MT-

M method, the suggested approach proves to be the

superior choice.

Keywords: Relational Database, Multi-Tenant, Service level

Agreement, Database, Security.

I. INTRODUCTION

In a multi-tenant SaaS setup, each tenant pays to use a

shared database for data storage. Therefore, the architecture of

the data layer determines the performance that is attained. For

the multi-tenant data, several different approaches have been

suggested in the past [1][2]. Level of separation of tenant data

is the major differentiator between these solutions. Every day,

service providers encounter a challenging issue in multi-tenant

structures, regardless of the data layer configuration used.

Performance service level agreements (SLAs) are necessary

because tenants want concrete assurances that the rental

services will be available and work as promised [3][4][5]. A

Performance Service Level Agreement (SLA) allows service

providers and tenants to collaborate in setting the standard for

rental services in terms of performance and availability.

Additionally, it lays forth the consequences for breaking the

SLA. To be profitable, service providers must optimize their

software and hardware resources while keeping operational

expenses to a minimum [6][7].

The resources of a single node are shared among several

tenants in a multi-tenant scenario [8]. Because of the high

level of multi-tenant synchronization on each node,

guaranteeing SLA agreements is a critical and challenging

issue. Thus, it is imperative that the cloud provider's data

storage system be intelligent enough to accommodate several

tenants, and that it has effective methods for data allocation,

migration, and replication. The main requirement for a multi-

tenant data storage system is to guarantee a reliable Quality of

Service (QoS) for all tenants by fulfilling their SLA

agreements.

The operational expenses of cloud service providers

should go down, and their hardware and software resources

should be used to their full potential. On the other hand, there

are a lot of big challenges to overcome when designing an

intelligent data storage system for cloud tenants. The main

challenge is meeting service level agreements (SLAs) while

ensuring Quality of Service (QoS) for numerous tenants.

Simply put, achieving SLA is crucial for cloud service

providers to avoid contractual fines and potential tenant

attrition while maintaining a good overall service quality. The

second obstacle is the renters' unpredictable and unexpected

workload patterns, which necessitate smooth modifications.

As a result, accurate data migration and replication for many

tenants is crucial for transferring the workload to a flexible

collection of locations [9].

II. BACKGROUND

Online applications, or "cloud services," provide users

with common infrastructures, platforms, and software

capabilities, as well as the ability to access these resources on

demand.

mailto:mshaik0507@gmail.com

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 9, Issue 4, pp 75-81, April-2025

https://doi.org/10.47001/IRJIET/2025.904010

© 2025 IRJIET All Rights Reserved www.irjiet.com 76

Multitenancy is a feature of cloud services that allows for the

provision of isolated application instances to numerous users.

One service instance can handle several users using

multitenancy while keeping configuration data, application

data, and user management separate, as stated in [11].

When one tenant's performance expectations and

resource consumption have a detrimental effect on another

tenant, it becomes difficult to provide multi-tenant services

without causing tenant isolation. Software architects need to

know how to control the required degree of isolation among

tenants sharing components of a cloud-hosted application. The

level of isolation that tenants can accomplish depends on

several factors, including the type of the component, its

position on the cloud application stack (application level,

platform level, or infrastructure level), and the process it

supports [12].

An example would be the difference in the degree of

isolation needed for two types of components: one that cannot

be shared due to stringent restrictions and laws and another

that needs to be adjusted for certain tenants with special

requirements. In the past, we have utilized three separate

cloud-hosted software development process tools: Subversion

with File SCM Plugin for version control, Hudson for

continuous integration, and Bugzilla for issue tracking [13].

Using actual, cloud-deployed Global Software

Development (GSD) tools, we were able to examine case

studies that put a modern occurrence in software engineering

into context by assessing the level of tenant isolation [14]. We

choose to conduct a case study synthesis in order to construct

a cohesive corpus of knowledge from these separate case

studies. We can add to the body of evidence beyond only the

case studies that already exist thanks to the case study

synthesis. As a result, we can create a whole from the pieces

and offer fresh perspectives on the levels of tenant isolation.

These aims lead us to think about three areas for future

study:

1. How is the degree of tenant isolation compared and

differentiated throughout our three case studies?

What are the benefits and drawbacks of each deployment

option in terms of tenant isolation, as determined by our three

case studies?

Thirdly, for each of our three case studies, what are the

most important obstacles to and suggestions for achieving

tenant isolation?

Using a cross-case analysis approach, we compared and

contrasted the tenant isolation features of each of the prior

case studies in order to carry out the case study synthesis.

Through the use of cross-case analysis, we may supplement

our knowledge of tenant isolation by combining results from

several case studies [15]. The cross-case analysis study

consisted of three phases: data reduction, data display, and

conclusion formulation and verification.

The analysis was carried out in an iterative fashion to

obtain the conclusion [16].

This article gives new insights and an explanatory

framework for understanding the similarities and variations in

cloud-hosted service design, development, and deployment, as

well as the trade-offs to think about when adopting tenant

separation [17]. Here is a brief overview of what this article

has to offer:

First, by describing trends in the similarities and

differences among the available case studies:

(i) Using locking to reduce disk space, reducing cloud

resource consumption, customizing and using plugin

architecture, and choosing a multi-tenancy pattern were five

case study commonalities that were found in the study. When

it comes to tenant isolation, two of these things are bad.

Reducing disk space, customization, and plugin design all

contribute to a lessened degree of isolation. Improving the

degree of isolation can be achieved through data migration

across repositories, selecting an appropriate multi-tenancy

design, locking data and processes to prevent collisions

between tenants, and carefully considering how to handle a

high workload [18].

III. ARCHITECTURE OF MULTITENANCY

What is multitenancy?

Multitenancy refers to the practice of numerous users

from different organizations using the same pool of computer

resources in the cloud. While users of the cloud do share

resources, they remain anonymous and all data remains in a

completely separate location. The multitenancy feature of

cloud computing is what makes cloud services so valuable.

Cloud computing, containerization, infrastructure as a service,

platform as a service, software as a service, and serverless

computing are all examples of services that operate on a

multitenant design.

Imagine a bank in order to grasp the concept of

multitenancy. It is possible for several individuals to use the

same bank to keep their money, and their assets will remain

distinct from one another despite the physical location of the

bank. Bank customers are completely isolated from one

another; they are unaware of one other, have no access to the

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 9, Issue 4, pp 75-81, April-2025

https://doi.org/10.47001/IRJIET/2025.904010

© 2025 IRJIET All Rights Reserved www.irjiet.com 77

funds of other customers, and never communicate with one

another. Public cloud computing is similar in that it allows

users to access the vendor's infrastructure (usually servers)

without compromising the security of their data or business

logic.

One software instance* serving several users, or tenants,

was the classic example of multitenancy. The word originally

referred to a shared software instance, but in contemporary

cloud computing, it now refers to the entire cloud architecture.

*A software instance is essentially a replica of an already-

executed program that is stored in RAM.

What is cloud computing?

In cloud computing, programs and data are housed on

distant servers in various data centers and made available

online. Instead of storing information on client devices (such

as cellphones or laptops) or on servers in a company's physical

headquarters, data and apps are moved to a central location in

the cloud.

For instance, a user can log in to Facebook and upload

information from any device because many modern programs

are cloud-based.

What are the benefits of multitenancy?

Due to multitenancy, cloud computing is able to offer

many advantages. Two major ways in which multitenancy

enhances cloud computing are as follows:

Optimal utilization of assets: Since a single tenant is not

likely to make full use of a single machine's processing power,

allocating just that machine to that tenant is wasteful. When

many tenants share equipment, the available resources are

used most efficiently. Cut costs: Because resources are shared

across users, a cloud provider can charge less for their services

and make them available to more people.

What are the drawbacks of multitenancy?

Possible security risks and compliance issues: Regardless of

how safe shared infrastructure is, certain businesses may be

unable to comply with regulations that prohibit it.

Furthermore, subject to the cloud provider's architecture being

appropriately set up, security vulnerabilities or damaged data

from one tenant on a server could possibly spread to other

tenants. Nonetheless, in actual application, this is quite

improbable to occur. Lessening the gravity of these worries is

the reality that cloud providers typically have more capital to

invest in security measures than individual businesses.

The "noisy neighbor" effect: When one tenant utilizes a lot

of computational resources, it can affect other tenants'

performance. This, again, ought not to occur if the cloud

service provider has carried out their duties adequately.

How does Cloudflare help companies with cloud

deployments?

Businesses using any kind of cloud deployment can

benefit from Cloudflare's assistance in maintaining the speed

and security of their online properties. The Cloudflare product

stack, when installed on top of any infrastructure, produces

web properties that are secure, reliable, and incredibly fast. A

more in-depth explanation of Cloudflare's compatibility with

cloud deployments may be found in their documentation on

the topic.

How does multitenancy work?

The technical underpinnings that allow various types of

cloud computing to support multitenancy will be examined

more thoroughly here.

In public cloud computing

Imagine if there was a single, all-purpose engine that

could effortlessly power a whole fleet of vehicles. For

instance, some motorists opt for 8-cylinder engines due to

their superior power, while others select 4-cylinder engines

due to their superior fuel efficiency.

 Let your mind go to a scenario where this unique engine

can adapt to the demands of the driver with each start-up. A

lot of public cloud providers do things like this when they

adopt multitenancy. One common definition of multitenancy

by cloud providers is a shared instance of software. In order to

tailor the software instance to the specific requirements of

each tenant, they collect metadata* about each tenant and

utilize this data during runtime. Password protection keeps

tenants separate from one another. Though they are all using

the same software instance, their experiences with it are

distinct.

Multi-Tenant Replication and Migration Techniques

Data migration and replication strategies have been in the

spotlight recently [14]. When a change in tenant performance

is detected, it is possible to migrate the tenant to another

environment using multi-tenant migration and replication

procedures [3]. By employing these methods, we can

condense numerous tenants into a single host environment and

reduce the strain on the cloud host. Therefore, in order to share

the host resources with less disturbance amongst tenants,

multi-tenant migration and replication techniques are utilized.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 9, Issue 4, pp 75-81, April-2025

https://doi.org/10.47001/IRJIET/2025.904010

© 2025 IRJIET All Rights Reserved www.irjiet.com 78

Figure 1: Clustered based multi-tenant database management system (CB-MT DBMS)

According to the literature review, the main objective is

to create an algorithm for multi-tenant migration and

replication that can take into account the irregular workload

patterns of multiple tenants and choose the optimal solution

for each. Previous research has focused on generating

solutions for a single tenant, which could lead to serious

service level agreement violations and penalties. Furthermore,

it is important to minimize duplication of effort when it comes

to migration and replication decisions on each host, and to

steer clear of any service level agreement (SLA) breaches.

Therefore, we suggest a technique called Multi-Tenant

Database Migration and Replication (MTDB-MR). This

algorithm has six services: Global Monitoring, Query

Coordinator, Forecasting, Clustering, Access Log Analysis,

and Tenant Weight Matrices. The proactive operation of the

suggested MTDB-MR algorithm is depicted in figure 1. The

first step is to identify the replica of the infringing tenant using

the forecasting service; this eliminates the problem of erratic

workload patterns that could cause massive SLA violations

and the resulting contractual penalty. The second change is

that, instead of only replicating or migrating the replica for a

single tenant, it now uses the planned access log analysis

service to decide whether to replicate all of the violated

tenants or just a subset of them.

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 9, Issue 4, pp 75-81, April-2025

https://doi.org/10.47001/IRJIET/2025.904010

© 2025 IRJIET All Rights Reserved www.irjiet.com 79

IV. EVALUATION

Using the right standard criterion is crucial when evaluating the suggested MTDB-MR method in a multitenant setting. On

the other hand, there is no agreed-upon metric for evaluating buildings with multiple tenants. Hence, in our evaluation, we offer a

complete multi-tenant environment with various databases in order to mimic a multi-tenant setting.

Figure 2: The simulated environment

A procedure is created for each TPC benchmark that includes a list of queries from the benchmark samples identified by

QueryID [10]. This allows each tenant site to replicate the workload of a multi-tenant database. The accuracy of the test could be

compromised if the TPC benchmark method were to be tested in a loop with the same QueryID. This is because data caching

would make subsequent runs faster. If SQLQueryStress wants to address the data caching issue, it must ensure that each virtual

user receives a unique QueryID.

Figure 3: TPC-DS1 Violated Tenant Evaluation Result

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 9, Issue 4, pp 75-81, April-2025

https://doi.org/10.47001/IRJIET/2025.904010

© 2025 IRJIET All Rights Reserved www.irjiet.com 80

The access log analysis service retrieves the tenant's access history from the global catalog log database. It then uses this

information to determine if the target tenants (TPC-DS1 and TPC-H2) should be replicated or migrated. To lessen the impact of

the problem, the access log analysis service recommended migrating tenant TPCDS1 to a different location and replicating tenant

TPCH2 to a different location. The suggested MTDB-MR algorithm constructs the TSWM from the following rule-based weight

matrices: tenant mix matrix TMM, tenant swap matrix TSM, tenant execution cost matrix TECM, and tenant site violation matrix

TSVM. This allows the algorithm to choose the best sites to replicate and migrate the violated tenants.

Figure 4: TPC-H2 Violated Tenant Evaluation Results

V. CONCLUSION AND FUTURE WORK

Hosting numerous tenants under a single database

management system (DBMS) while enabling active resource

sharing is the primary function of a multi-tenant database. As

they try to strike a balance between the performances they can

offer their tenants and the running costs, cloud service

providers face the issue of providing these performance goals.

Furthermore, SLA guarantees can be significantly affected by

tenants' unpredictable workload patterns. Because of the

positive effects on service availability, performance,

adaptability, and quality, replicating and migrating tenant

databases is a viable option for service providers. In this study,

a novel DBMS called CB-MT is proposed, which stands for

clustered based multi-tenant. Additionally, MTDB-MR, a

proactive and dynamic technique for migrating and replicating

multi-tenant databases, is proposed. The predicted requirement

for data migration and replication from various tenants is

enhanced by this algorithm, which employs prediction

findings. Additionally, by preventing SLA violations, it

satisfies the quality of service needs of several tenants. For

client sites with more than one tenant, the experimental

findings show that the proposed MTDB-MR algorithm

drastically cuts overall execution time (44.74%), total number

of violations (89%), and average response time (36.68%),

compared to the previous basic method. Future work will

expand the suggested MTDB-MR algorithm to incorporate

other forecasting models into the service.

REFERENCES

[1] Armbrust M, Fox A, Griffith R, Joseph AD, Katz R,

Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I,

Zaharia M (2010) A view of cloud computing.

Commun ACM 53(4):50–58. [Online]. Available:

http://doi.acm.org/10.1145/1721654.1721672.

[2] Khazaei H, Misic J, Misic VB (2012) Performance

analysis of cloud computing centers using m/g/m/m+ r

International Research Journal of Innovations in Engineering and Technology (IRJIET)

ISSN (online): 2581-3048

Volume 9, Issue 4, pp 75-81, April-2025

https://doi.org/10.47001/IRJIET/2025.904010

© 2025 IRJIET All Rights Reserved www.irjiet.com 81

queuing systems. Parallel Distrib Syst IEEE Trans on

23(5):936–943.

[3] Fehling C, Leymann F, Retter R, Schupeck W, Arbitter

P (2014) Cloud Computing Patterns. Springer, London.

[4] Bauer E, Adams R (2012) Reliability and availability

of cloud computing. Wiley, New Jersey.

[5] Ochei LC, Bass J, Petrovski A (2015) Evaluating

degrees of multitenancy isolation: A case study of

cloud-hosted gsd tools In: 2015 International

Conference on Cloud and Autonomic Computing

(ICCAC), 101–112. IEEE.

https://ieeexplore.ieee.org/abstract/document/7312145/.

[6] Ochei LC, Petrovski A, Bass J (2015) Evaluating

degrees of isolation between tenants enabled by

multitenancy patterns for cloud-hosted version control

systems (vcs). Int J Intell Comput Res 6(3):601–612.

[7] Ochei LC, Bass J, Petrovski A (2016) Implementing

the required degree of multitenancy isolation: A case

study of cloud-hosted bug tracking system In: 13th

IEEE International Conference on Services Computing

(SCC 2016). IEEE.

[8] Runeson P, Host M, Rainer A, Regnell B (2012) Case

study research in software engineering: Guidelines and

examples. Wiley, New Jersey.

[9] Cruzes DS, Dybå T, Runeson P, Höst M (2015) Case

studies synthesis: a thematic, cross-case, and narrative

synthesis worked example. Empir Softw Eng

20(6):1634–1665.

[10] Cruzes DS, Dybå T (2011) Research synthesis in

software engineering: A tertiary study. Inf Softw

Technol 53(5):440–455.

[11] Chong F, Carraro G (2006) Architecture strategies for

catching the long tail. Technical report, Microsoft.

[Online https://msdn.microsoft.com/en-

us/library/aa479069.aspx]. Accessed Oct 2018.

[12] Wang ZH, Guo CJ, Gao B, Sun W, Zhang Z, An WH

(2008) A study and performance evaluation of the

multi-tenant data tier design patterns for service

oriented computing In: IEEE International Conference

on e-Business Engineering, 94–101. IEEE.

https://ieeexplore.ieee.org/abstract/document/4690605/.

[13] Vengurlekar N (2012) Isolation in private database

clouds. Oracle Corporation. [Online

https://www.oracle.com/technetwork/database/database

-cloud/]. Accessed Oct 2018.

[14] Walraven S, De Borger W, Vanbrabant B, Lagaisse B,

Van Landuyt D, Joosen W (2015) Adaptive

performance isolation middleware for multi-tenant saas

In: Utility and Cloud Computing (UCC), 2015

IEEE/ACM 8th International Conference on, 112–121.

IEEE.

https://ieeexplore.ieee.org/abstract/document/7431402/.

[15] Mietzner R, Unger T, Titze R, Leymann F (2009)

Combining different multi-tenancy patterns in service-

oriented applications In: Proceedings of the 2009 IEEE

International Enterprise Distributed Object Computing

Conference (edoc 2009), 131–140. IEEE.

https://ieeexplore.ieee.org/abstract/document/5277698/.

[16] Guo CJ, Sun W, Huang Y, Wang ZH, Gao B (2007) A

framework for native multi-tenancy application

development and management In: Proceedings of the

2007 IEEE International Conference on ECommerce

Technology and the IEEE International Conference on

Enterprise Computing, E-Commerce, and EServices,

551–558. IEEE.

http://doi.ieeecomputersociety.org/10.1109/CEC-

EEE.2007.4.

[17] Walraven S, Monheim T, Truyen E, Joosen W (2012)

Towards performance isolation in multi-tenant saas

applications In: Proceedings of the 7th Workshop on

Middleware for Next Generation Internet Computing,

6. ACM.

[18] Krebs R, Wert A, Kounev S (2013) Multi-tenancy

performance benchmark for web application platforms

In: Web Engineering, 424–438. Springer, Berlin.

https://link.springer.com/chapter/10.1007/978-3-642-

39200-9_36.

Citation of this Article:

Mohammed Sadhik Shaik. (2025). DM Based Multi-Tenant Framework to Perform Migration in Cloud Environment.

International Research Journal of Innovations in Engineering and Technology - IRJIET, 9(4), 75-81. Article DOI

https://doi.org/10.47001/IRJIET/2025.904010

https://doi.org/10.47001/IRJIET/2025.904010

